// Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. package codec import ( "encoding" "errors" "fmt" "io" "math" "reflect" "strconv" "time" ) // Some tagging information for error messages. const ( msgBadDesc = "unrecognized descriptor byte" // msgDecCannotExpandArr = "cannot expand go array from %v to stream length: %v" ) const ( decDefMaxDepth = 1024 // maximum depth decDefSliceCap = 8 decDefChanCap = 64 // should be large, as cap cannot be expanded decScratchByteArrayLen = (6 * 8) // ??? cacheLineSize + // decContainerLenUnknown is length returned from Read(Map|Array)Len // when a format doesn't know apiori. // For example, json doesn't pre-determine the length of a container (sequence/map). decContainerLenUnknown = -1 // decContainerLenNil is length returned from Read(Map|Array)Len // when a 'nil' was encountered in the stream. decContainerLenNil = math.MinInt32 // decFailNonEmptyIntf configures whether we error // when decoding naked into a non-empty interface. // // Typically, we cannot decode non-nil stream value into // nil interface with methods (e.g. io.Reader). // However, in some scenarios, this should be allowed: // - MapType // - SliceType // - Extensions // // Consequently, we should relax this. Put it behind a const flag for now. decFailNonEmptyIntf = false ) var ( errstrOnlyMapOrArrayCanDecodeIntoStruct = "only encoded map or array can be decoded into a struct" errstrCannotDecodeIntoNil = "cannot decode into nil" // errmsgExpandSliceOverflow = "expand slice: slice overflow" errmsgExpandSliceCannotChange = "expand slice: cannot change" errDecoderNotInitialized = errors.New("Decoder not initialized") errDecUnreadByteNothingToRead = errors.New("cannot unread - nothing has been read") errDecUnreadByteLastByteNotRead = errors.New("cannot unread - last byte has not been read") errDecUnreadByteUnknown = errors.New("cannot unread - reason unknown") errMaxDepthExceeded = errors.New("maximum decoding depth exceeded") errBytesDecReaderCannotUnread = errors.New("cannot unread last byte read") ) type decDriver interface { // this will check if the next token is a break. CheckBreak() bool // TryNil tries to decode as nil. TryNil() bool // ContainerType returns one of: Bytes, String, Nil, Slice or Map. // // Return unSet if not known. // // Note: Implementations MUST fully consume sentinel container types, specifically Nil. ContainerType() (vt valueType) // DecodeNaked will decode primitives (number, bool, string, []byte) and RawExt. // For maps and arrays, it will not do the decoding in-band, but will signal // the decoder, so that is done later, by setting the decNaked.valueType field. // // Note: Numbers are decoded as int64, uint64, float64 only (no smaller sized number types). // for extensions, DecodeNaked must read the tag and the []byte if it exists. // if the []byte is not read, then kInterfaceNaked will treat it as a Handle // that stores the subsequent value in-band, and complete reading the RawExt. // // extensions should also use readx to decode them, for efficiency. // kInterface will extract the detached byte slice if it has to pass it outside its realm. DecodeNaked() DecodeInt64() (i int64) DecodeUint64() (ui uint64) DecodeFloat64() (f float64) DecodeBool() (b bool) // DecodeStringAsBytes returns the bytes representing a string. // By definition, it will return a view into a scratch buffer. // // Note: This can also decode symbols, if supported. // // Users should consume it right away and not store it for later use. DecodeStringAsBytes() (v []byte) // DecodeBytes may be called directly, without going through reflection. // Consequently, it must be designed to handle possible nil. DecodeBytes(bs []byte, zerocopy bool) (bsOut []byte) // DecodeBytes(bs []byte, isstring, zerocopy bool) (bsOut []byte) // DecodeExt will decode into a *RawExt or into an extension. DecodeExt(v interface{}, xtag uint64, ext Ext) // decodeExt(verifyTag bool, tag byte) (xtag byte, xbs []byte) DecodeTime() (t time.Time) // ReadArrayStart will return the length of the array. // If the format doesn't prefix the length, it returns decContainerLenUnknown. // If the expected array was a nil in the stream, it returns decContainerLenNil. ReadArrayStart() int ReadArrayEnd() // ReadMapStart will return the length of the array. // If the format doesn't prefix the length, it returns decContainerLenUnknown. // If the expected array was a nil in the stream, it returns decContainerLenNil. ReadMapStart() int ReadMapEnd() reset() atEndOfDecode() uncacheRead() decoder() *Decoder } type decDriverContainerTracker interface { ReadArrayElem() ReadMapElemKey() ReadMapElemValue() } type decodeError struct { codecError pos int } func (d decodeError) Error() string { return fmt.Sprintf("%s decode error [pos %d]: %v", d.name, d.pos, d.err) } type decDriverNoopContainerReader struct{} func (x decDriverNoopContainerReader) ReadArrayStart() (v int) { return } func (x decDriverNoopContainerReader) ReadArrayEnd() {} func (x decDriverNoopContainerReader) ReadMapStart() (v int) { return } func (x decDriverNoopContainerReader) ReadMapEnd() {} func (x decDriverNoopContainerReader) CheckBreak() (v bool) { return } func (x decDriverNoopContainerReader) atEndOfDecode() {} // DecodeOptions captures configuration options during decode. type DecodeOptions struct { // MapType specifies type to use during schema-less decoding of a map in the stream. // If nil (unset), we default to map[string]interface{} iff json handle and MapStringAsKey=true, // else map[interface{}]interface{}. MapType reflect.Type // SliceType specifies type to use during schema-less decoding of an array in the stream. // If nil (unset), we default to []interface{} for all formats. SliceType reflect.Type // MaxInitLen defines the maxinum initial length that we "make" a collection // (string, slice, map, chan). If 0 or negative, we default to a sensible value // based on the size of an element in the collection. // // For example, when decoding, a stream may say that it has 2^64 elements. // We should not auto-matically provision a slice of that size, to prevent Out-Of-Memory crash. // Instead, we provision up to MaxInitLen, fill that up, and start appending after that. MaxInitLen int // ReaderBufferSize is the size of the buffer used when reading. // // if > 0, we use a smart buffer internally for performance purposes. ReaderBufferSize int // MaxDepth defines the maximum depth when decoding nested // maps and slices. If 0 or negative, we default to a suitably large number (currently 1024). MaxDepth int16 // If ErrorIfNoField, return an error when decoding a map // from a codec stream into a struct, and no matching struct field is found. ErrorIfNoField bool // If ErrorIfNoArrayExpand, return an error when decoding a slice/array that cannot be expanded. // For example, the stream contains an array of 8 items, but you are decoding into a [4]T array, // or you are decoding into a slice of length 4 which is non-addressable (and so cannot be set). ErrorIfNoArrayExpand bool // If SignedInteger, use the int64 during schema-less decoding of unsigned values (not uint64). SignedInteger bool // MapValueReset controls how we decode into a map value. // // By default, we MAY retrieve the mapping for a key, and then decode into that. // However, especially with big maps, that retrieval may be expensive and unnecessary // if the stream already contains all that is necessary to recreate the value. // // If true, we will never retrieve the previous mapping, // but rather decode into a new value and set that in the map. // // If false, we will retrieve the previous mapping if necessary e.g. // the previous mapping is a pointer, or is a struct or array with pre-set state, // or is an interface. MapValueReset bool // SliceElementReset: on decoding a slice, reset the element to a zero value first. // // concern: if the slice already contained some garbage, we will decode into that garbage. SliceElementReset bool // InterfaceReset controls how we decode into an interface. // // By default, when we see a field that is an interface{...}, // or a map with interface{...} value, we will attempt decoding into the // "contained" value. // // However, this prevents us from reading a string into an interface{} // that formerly contained a number. // // If true, we will decode into a new "blank" value, and set that in the interface. // If false, we will decode into whatever is contained in the interface. InterfaceReset bool // InternString controls interning of strings during decoding. // // Some handles, e.g. json, typically will read map keys as strings. // If the set of keys are finite, it may help reduce allocation to // look them up from a map (than to allocate them afresh). // // Note: Handles will be smart when using the intern functionality. // Every string should not be interned. // An excellent use-case for interning is struct field names, // or map keys where key type is string. InternString bool // PreferArrayOverSlice controls whether to decode to an array or a slice. // // This only impacts decoding into a nil interface{}. // // Consequently, it has no effect on codecgen. // // *Note*: This only applies if using go1.5 and above, // as it requires reflect.ArrayOf support which was absent before go1.5. PreferArrayOverSlice bool // DeleteOnNilMapValue controls how to decode a nil value in the stream. // // If true, we will delete the mapping of the key. // Else, just set the mapping to the zero value of the type. // // Deprecated: This does NOTHING and is left behind for compiling compatibility. // This change is necessitated because 'nil' in a stream now consistently // means the zero value (ie reset the value to its zero state). DeleteOnNilMapValue bool // RawToString controls how raw bytes in a stream are decoded into a nil interface{}. // By default, they are decoded as []byte, but can be decoded as string (if configured). RawToString bool } // ---------------------------------------- func (d *Decoder) rawExt(f *codecFnInfo, rv reflect.Value) { d.d.DecodeExt(rv2i(rv), 0, nil) } func (d *Decoder) ext(f *codecFnInfo, rv reflect.Value) { d.d.DecodeExt(rv2i(rv), f.xfTag, f.xfFn) } func (d *Decoder) selferUnmarshal(f *codecFnInfo, rv reflect.Value) { rv2i(rv).(Selfer).CodecDecodeSelf(d) } func (d *Decoder) binaryUnmarshal(f *codecFnInfo, rv reflect.Value) { bm := rv2i(rv).(encoding.BinaryUnmarshaler) xbs := d.d.DecodeBytes(nil, true) if fnerr := bm.UnmarshalBinary(xbs); fnerr != nil { panic(fnerr) } } func (d *Decoder) textUnmarshal(f *codecFnInfo, rv reflect.Value) { tm := rv2i(rv).(encoding.TextUnmarshaler) fnerr := tm.UnmarshalText(d.d.DecodeStringAsBytes()) if fnerr != nil { panic(fnerr) } } func (d *Decoder) jsonUnmarshal(f *codecFnInfo, rv reflect.Value) { tm := rv2i(rv).(jsonUnmarshaler) // bs := d.d.DecodeBytes(d.b[:], true, true) // grab the bytes to be read, as UnmarshalJSON needs the full JSON so as to unmarshal it itself. fnerr := tm.UnmarshalJSON(d.nextValueBytes()) if fnerr != nil { panic(fnerr) } } func (d *Decoder) kErr(f *codecFnInfo, rv reflect.Value) { d.errorf("no decoding function defined for kind %v", rv.Kind()) } func (d *Decoder) raw(f *codecFnInfo, rv reflect.Value) { rvSetBytes(rv, d.rawBytes()) } func (d *Decoder) kString(f *codecFnInfo, rv reflect.Value) { rvSetString(rv, string(d.d.DecodeStringAsBytes())) } func (d *Decoder) kBool(f *codecFnInfo, rv reflect.Value) { rvSetBool(rv, d.d.DecodeBool()) } func (d *Decoder) kTime(f *codecFnInfo, rv reflect.Value) { rvSetTime(rv, d.d.DecodeTime()) } func (d *Decoder) kFloat32(f *codecFnInfo, rv reflect.Value) { rvSetFloat32(rv, d.decodeFloat32()) } func (d *Decoder) kFloat64(f *codecFnInfo, rv reflect.Value) { rvSetFloat64(rv, d.d.DecodeFloat64()) } func (d *Decoder) kInt(f *codecFnInfo, rv reflect.Value) { rvSetInt(rv, int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize))) } func (d *Decoder) kInt8(f *codecFnInfo, rv reflect.Value) { rvSetInt8(rv, int8(chkOvf.IntV(d.d.DecodeInt64(), 8))) } func (d *Decoder) kInt16(f *codecFnInfo, rv reflect.Value) { rvSetInt16(rv, int16(chkOvf.IntV(d.d.DecodeInt64(), 16))) } func (d *Decoder) kInt32(f *codecFnInfo, rv reflect.Value) { rvSetInt32(rv, int32(chkOvf.IntV(d.d.DecodeInt64(), 32))) } func (d *Decoder) kInt64(f *codecFnInfo, rv reflect.Value) { rvSetInt64(rv, d.d.DecodeInt64()) } func (d *Decoder) kUint(f *codecFnInfo, rv reflect.Value) { rvSetUint(rv, uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))) } func (d *Decoder) kUintptr(f *codecFnInfo, rv reflect.Value) { rvSetUintptr(rv, uintptr(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))) } func (d *Decoder) kUint8(f *codecFnInfo, rv reflect.Value) { rvSetUint8(rv, uint8(chkOvf.UintV(d.d.DecodeUint64(), 8))) } func (d *Decoder) kUint16(f *codecFnInfo, rv reflect.Value) { rvSetUint16(rv, uint16(chkOvf.UintV(d.d.DecodeUint64(), 16))) } func (d *Decoder) kUint32(f *codecFnInfo, rv reflect.Value) { rvSetUint32(rv, uint32(chkOvf.UintV(d.d.DecodeUint64(), 32))) } func (d *Decoder) kUint64(f *codecFnInfo, rv reflect.Value) { rvSetUint64(rv, d.d.DecodeUint64()) } func (d *Decoder) kInterfaceNaked(f *codecFnInfo) (rvn reflect.Value) { // nil interface: // use some hieristics to decode it appropriately // based on the detected next value in the stream. n := d.naked() d.d.DecodeNaked() // We cannot decode non-nil stream value into nil interface with methods (e.g. io.Reader). // Howver, it is possible that the user has ways to pass in a type for a given interface // - MapType // - SliceType // - Extensions // // Consequently, we should relax this. Put it behind a const flag for now. if decFailNonEmptyIntf && f.ti.numMeth > 0 { d.errorf("cannot decode non-nil codec value into nil %v (%v methods)", f.ti.rt, f.ti.numMeth) return } switch n.v { case valueTypeMap: // if json, default to a map type with string keys mtid := d.mtid if mtid == 0 { if d.jsms { mtid = mapStrIntfTypId } else { mtid = mapIntfIntfTypId } } if mtid == mapIntfIntfTypId { var v2 map[interface{}]interface{} d.decode(&v2) rvn = rv4i(&v2).Elem() } else if mtid == mapStrIntfTypId { // for json performance var v2 map[string]interface{} d.decode(&v2) rvn = rv4i(&v2).Elem() } else { if d.mtr { rvn = reflect.New(d.h.MapType) d.decode(rv2i(rvn)) rvn = rvn.Elem() } else { rvn = rvZeroAddrK(d.h.MapType, reflect.Map) d.decodeValue(rvn, nil) } } case valueTypeArray: if d.stid == 0 || d.stid == intfSliceTypId { var v2 []interface{} d.decode(&v2) rvn = rv4i(&v2).Elem() } else { if d.str { rvn = reflect.New(d.h.SliceType) d.decode(rv2i(rvn)) rvn = rvn.Elem() } else { rvn = rvZeroAddrK(d.h.SliceType, reflect.Slice) d.decodeValue(rvn, nil) } } if reflectArrayOfSupported && d.h.PreferArrayOverSlice { rvn = rvGetArray4Slice(rvn) } case valueTypeExt: tag, bytes := n.u, n.l // calling decode below might taint the values bfn := d.h.getExtForTag(tag) var re = RawExt{Tag: tag} if bytes == nil { // it is one of the InterfaceExt ones: json and cbor. // most likely cbor, as json decoding never reveals valueTypeExt (no tagging support) if bfn == nil { d.decode(&re.Value) rvn = rv4i(&re).Elem() } else { if bfn.ext == SelfExt { rvn = rvZeroAddrK(bfn.rt, bfn.rt.Kind()) d.decodeValue(rvn, d.h.fnNoExt(bfn.rt)) } else { rvn = reflect.New(bfn.rt) d.interfaceExtConvertAndDecode(rv2i(rvn), bfn.ext) rvn = rvn.Elem() } } } else { // one of the BytesExt ones: binc, msgpack, simple if bfn == nil { re.Data = detachZeroCopyBytes(d.bytes, nil, bytes) rvn = rv4i(&re).Elem() } else { rvn = reflect.New(bfn.rt) if bfn.ext == SelfExt { d.sideDecode(rv2i(rvn), bytes) } else { bfn.ext.ReadExt(rv2i(rvn), bytes) } rvn = rvn.Elem() } } case valueTypeNil: // rvn = reflect.Zero(f.ti.rt) // no-op case valueTypeInt: rvn = n.ri() case valueTypeUint: rvn = n.ru() case valueTypeFloat: rvn = n.rf() case valueTypeBool: rvn = n.rb() case valueTypeString, valueTypeSymbol: rvn = n.rs() case valueTypeBytes: rvn = n.rl() case valueTypeTime: rvn = n.rt() default: panicv.errorf("kInterfaceNaked: unexpected valueType: %d", n.v) } return } func (d *Decoder) kInterface(f *codecFnInfo, rv reflect.Value) { // Note: // A consequence of how kInterface works, is that // if an interface already contains something, we try // to decode into what was there before. // We do not replace with a generic value (as got from decodeNaked). // every interface passed here MUST be settable. var rvn reflect.Value if rvIsNil(rv) || d.h.InterfaceReset { // check if mapping to a type: if so, initialize it and move on rvn = d.h.intf2impl(f.ti.rtid) if rvn.IsValid() { rv.Set(rvn) } else { rvn = d.kInterfaceNaked(f) // xdebugf("kInterface: %v", rvn) if rvn.IsValid() { rv.Set(rvn) } else if d.h.InterfaceReset { // reset to zero value based on current type in there. if rvelem := rv.Elem(); rvelem.IsValid() { rv.Set(reflect.Zero(rvelem.Type())) } } return } } else { // now we have a non-nil interface value, meaning it contains a type rvn = rv.Elem() } // Note: interface{} is settable, but underlying type may not be. // Consequently, we MAY have to create a decodable value out of the underlying value, // decode into it, and reset the interface itself. // fmt.Printf(">>>> kInterface: rvn type: %v, rv type: %v\n", rvn.Type(), rv.Type()) if isDecodeable(rvn) { d.decodeValue(rvn, nil) return } rvn2 := rvZeroAddrK(rvn.Type(), rvn.Kind()) rvSetDirect(rvn2, rvn) d.decodeValue(rvn2, nil) rv.Set(rvn2) } func decStructFieldKey(dd decDriver, keyType valueType, b *[decScratchByteArrayLen]byte) (rvkencname []byte) { // use if-else-if, not switch (which compiles to binary-search) // since keyType is typically valueTypeString, branch prediction is pretty good. if keyType == valueTypeString { rvkencname = dd.DecodeStringAsBytes() } else if keyType == valueTypeInt { rvkencname = strconv.AppendInt(b[:0], dd.DecodeInt64(), 10) } else if keyType == valueTypeUint { rvkencname = strconv.AppendUint(b[:0], dd.DecodeUint64(), 10) } else if keyType == valueTypeFloat { rvkencname = strconv.AppendFloat(b[:0], dd.DecodeFloat64(), 'f', -1, 64) } else { rvkencname = dd.DecodeStringAsBytes() } return } func (d *Decoder) kStruct(f *codecFnInfo, rv reflect.Value) { sfn := structFieldNode{v: rv, update: true} ctyp := d.d.ContainerType() if ctyp == valueTypeNil { rvSetDirect(rv, f.ti.rv0) return } var mf MissingFielder if f.ti.isFlag(tiflagMissingFielder) { mf = rv2i(rv).(MissingFielder) } else if f.ti.isFlag(tiflagMissingFielderPtr) { mf = rv2i(rv.Addr()).(MissingFielder) } if ctyp == valueTypeMap { containerLen := d.mapStart() if containerLen == 0 { d.mapEnd() return } tisfi := f.ti.sfiSort hasLen := containerLen >= 0 var rvkencname []byte for j := 0; (hasLen && j < containerLen) || !(hasLen || d.checkBreak()); j++ { d.mapElemKey() rvkencname = decStructFieldKey(d.d, f.ti.keyType, &d.b) d.mapElemValue() if k := f.ti.indexForEncName(rvkencname); k > -1 { si := tisfi[k] d.decodeValue(sfn.field(si), nil) } else if mf != nil { // store rvkencname in new []byte, as it previously shares Decoder.b, which is used in decode name2 := rvkencname rvkencname = make([]byte, len(rvkencname)) copy(rvkencname, name2) var f interface{} d.decode(&f) if !mf.CodecMissingField(rvkencname, f) && d.h.ErrorIfNoField { d.errorf("no matching struct field found when decoding stream map with key: %s ", stringView(rvkencname)) } } else { d.structFieldNotFound(-1, stringView(rvkencname)) } // keepAlive4StringView(rvkencnameB) // not needed, as reference is outside loop } d.mapEnd() } else if ctyp == valueTypeArray { containerLen := d.arrayStart() if containerLen == 0 { d.arrayEnd() return } // Not much gain from doing it two ways for array. // Arrays are not used as much for structs. hasLen := containerLen >= 0 var checkbreak bool for j, si := range f.ti.sfiSrc { if hasLen && j == containerLen { break } if !hasLen && d.checkBreak() { checkbreak = true break } d.arrayElem() d.decodeValue(sfn.field(si), nil) } if (hasLen && containerLen > len(f.ti.sfiSrc)) || (!hasLen && !checkbreak) { // read remaining values and throw away for j := len(f.ti.sfiSrc); ; j++ { if (hasLen && j == containerLen) || (!hasLen && d.checkBreak()) { break } d.arrayElem() d.structFieldNotFound(j, "") } } d.arrayEnd() } else { d.errorstr(errstrOnlyMapOrArrayCanDecodeIntoStruct) return } } func (d *Decoder) kSlice(f *codecFnInfo, rv reflect.Value) { // A slice can be set from a map or array in stream. // This way, the order can be kept (as order is lost with map). // Note: rv is a slice type here - guaranteed rtelem0 := f.ti.elem ctyp := d.d.ContainerType() if ctyp == valueTypeNil { if rv.CanSet() { rvSetDirect(rv, f.ti.rv0) } return } if ctyp == valueTypeBytes || ctyp == valueTypeString { // you can only decode bytes or string in the stream into a slice or array of bytes if !(f.ti.rtid == uint8SliceTypId || rtelem0.Kind() == reflect.Uint8) { d.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", f.ti.rt) } rvbs := rvGetBytes(rv) bs2 := d.d.DecodeBytes(rvbs, false) // if rvbs == nil && bs2 != nil || rvbs != nil && bs2 == nil || len(bs2) != len(rvbs) { if !(len(bs2) > 0 && len(bs2) == len(rvbs) && &bs2[0] == &rvbs[0]) { if rv.CanSet() { rvSetBytes(rv, bs2) } else if len(rvbs) > 0 && len(bs2) > 0 { copy(rvbs, bs2) } } return } slh, containerLenS := d.decSliceHelperStart() // only expects valueType(Array|Map) - never Nil // an array can never return a nil slice. so no need to check f.array here. if containerLenS == 0 { if rv.CanSet() { if rvIsNil(rv) { rvSetDirect(rv, reflect.MakeSlice(f.ti.rt, 0, 0)) } else { rvSetSliceLen(rv, 0) } } slh.End() return } rtelem0Size := int(rtelem0.Size()) rtElem0Kind := rtelem0.Kind() rtelem0Mut := !isImmutableKind(rtElem0Kind) rtelem := rtelem0 rtelemkind := rtelem.Kind() for rtelemkind == reflect.Ptr { rtelem = rtelem.Elem() rtelemkind = rtelem.Kind() } var fn *codecFn var rv0 = rv var rvChanged bool var rvCanset = rv.CanSet() var rv9 reflect.Value rvlen := rvGetSliceLen(rv) rvcap := rvGetSliceCap(rv) hasLen := containerLenS > 0 if hasLen { if containerLenS > rvcap { oldRvlenGtZero := rvlen > 0 rvlen = decInferLen(containerLenS, d.h.MaxInitLen, int(rtelem0.Size())) if rvlen <= rvcap { if rvCanset { rvSetSliceLen(rv, rvlen) } } else if rvCanset { rv = reflect.MakeSlice(f.ti.rt, rvlen, rvlen) rvcap = rvlen rvChanged = true } else { d.errorf("cannot decode into non-settable slice") } if rvChanged && oldRvlenGtZero && rtelem0Mut { // !isImmutableKind(rtelem0.Kind()) { rvCopySlice(rv, rv0) // only copy up to length NOT cap i.e. rv0.Slice(0, rvcap) } } else if containerLenS != rvlen { rvlen = containerLenS if rvCanset { rvSetSliceLen(rv, rvlen) } } } // consider creating new element once, and just decoding into it. var rtelem0Zero reflect.Value var rtelem0ZeroValid bool var j int for ; (hasLen && j < containerLenS) || !(hasLen || d.checkBreak()); j++ { if j == 0 && f.seq == seqTypeSlice && rvIsNil(rv) { if hasLen { rvlen = decInferLen(containerLenS, d.h.MaxInitLen, rtelem0Size) } else { rvlen = decDefSliceCap } if rvCanset { rv = reflect.MakeSlice(f.ti.rt, rvlen, rvlen) rvcap = rvlen rvChanged = true } else { d.errorf("cannot decode into non-settable slice") } } slh.ElemContainerState(j) // if indefinite, etc, then expand the slice if necessary if j >= rvlen { if f.seq == seqTypeArray { d.arrayCannotExpand(rvlen, j+1) // drain completely and return d.swallow() j++ for ; (hasLen && j < containerLenS) || !(hasLen || d.checkBreak()); j++ { slh.ElemContainerState(j) d.swallow() } slh.End() return } // rv = reflect.Append(rv, reflect.Zero(rtelem0)) // append logic + varargs // expand the slice up to the cap. // Note that we did, so we have to reset it later. if rvlen < rvcap { if rv.CanSet() { rvSetSliceLen(rv, rvcap) } else if rvCanset { rv = rvSlice(rv, rvcap) rvChanged = true } else { d.errorf(errmsgExpandSliceCannotChange) return } rvlen = rvcap } else { if !rvCanset { d.errorf(errmsgExpandSliceCannotChange) return } rvcap = growCap(rvcap, rtelem0Size, rvcap) rv9 = reflect.MakeSlice(f.ti.rt, rvcap, rvcap) rvCopySlice(rv9, rv) rv = rv9 rvChanged = true rvlen = rvcap } } rv9 = rvSliceIndex(rv, j, f.ti) if d.h.SliceElementReset { if !rtelem0ZeroValid { rtelem0ZeroValid = true rtelem0Zero = reflect.Zero(rtelem0) } rv9.Set(rtelem0Zero) } if fn == nil { fn = d.h.fn(rtelem) } d.decodeValue(rv9, fn) } if j < rvlen { if rv.CanSet() { rvSetSliceLen(rv, j) } else if rvCanset { rv = rvSlice(rv, j) rvChanged = true } rvlen = j } else if j == 0 && rvIsNil(rv) { if rvCanset { rv = reflect.MakeSlice(f.ti.rt, 0, 0) rvChanged = true } } slh.End() if rvChanged { // infers rvCanset=true, so it can be reset rv0.Set(rv) } } func (d *Decoder) kSliceForChan(f *codecFnInfo, rv reflect.Value) { // A slice can be set from a map or array in stream. // This way, the order can be kept (as order is lost with map). if f.ti.chandir&uint8(reflect.SendDir) == 0 { d.errorf("receive-only channel cannot be decoded") } rtelem0 := f.ti.elem ctyp := d.d.ContainerType() if ctyp == valueTypeNil { rvSetDirect(rv, f.ti.rv0) return } if ctyp == valueTypeBytes || ctyp == valueTypeString { // you can only decode bytes or string in the stream into a slice or array of bytes if !(f.ti.rtid == uint8SliceTypId || rtelem0.Kind() == reflect.Uint8) { d.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", f.ti.rt) } bs2 := d.d.DecodeBytes(nil, true) irv := rv2i(rv) ch, ok := irv.(chan<- byte) if !ok { ch = irv.(chan byte) } for _, b := range bs2 { ch <- b } return } // only expects valueType(Array|Map - nil handled above) slh, containerLenS := d.decSliceHelperStart() // an array can never return a nil slice. so no need to check f.array here. if containerLenS == 0 { if rv.CanSet() && rvIsNil(rv) { rvSetDirect(rv, reflect.MakeChan(f.ti.rt, 0)) } slh.End() return } rtelem0Size := int(rtelem0.Size()) rtElem0Kind := rtelem0.Kind() rtelem0Mut := !isImmutableKind(rtElem0Kind) rtelem := rtelem0 rtelemkind := rtelem.Kind() for rtelemkind == reflect.Ptr { rtelem = rtelem.Elem() rtelemkind = rtelem.Kind() } var fn *codecFn var rvCanset = rv.CanSet() var rvChanged bool var rv0 = rv var rv9 reflect.Value var rvlen int // := rv.Len() hasLen := containerLenS > 0 var j int for ; (hasLen && j < containerLenS) || !(hasLen || d.checkBreak()); j++ { if j == 0 && rvIsNil(rv) { if hasLen { rvlen = decInferLen(containerLenS, d.h.MaxInitLen, rtelem0Size) } else { rvlen = decDefChanCap } if rvCanset { rv = reflect.MakeChan(f.ti.rt, rvlen) rvChanged = true } else { d.errorf("cannot decode into non-settable chan") } } slh.ElemContainerState(j) if rtelem0Mut || !rv9.IsValid() { // || (rtElem0Kind == reflect.Ptr && rvIsNil(rv9)) { rv9 = rvZeroAddrK(rtelem0, rtElem0Kind) } if fn == nil { fn = d.h.fn(rtelem) } d.decodeValue(rv9, fn) rv.Send(rv9) } slh.End() if rvChanged { // infers rvCanset=true, so it can be reset rv0.Set(rv) } } func (d *Decoder) kMap(f *codecFnInfo, rv reflect.Value) { containerLen := d.mapStart() if containerLen == decContainerLenNil { rvSetDirect(rv, f.ti.rv0) return } ti := f.ti if rvIsNil(rv) { rvlen := decInferLen(containerLen, d.h.MaxInitLen, int(ti.key.Size()+ti.elem.Size())) rvSetDirect(rv, makeMapReflect(ti.rt, rvlen)) } if containerLen == 0 { d.mapEnd() return } ktype, vtype := ti.key, ti.elem ktypeId := rt2id(ktype) vtypeKind := vtype.Kind() ktypeKind := ktype.Kind() var vtypeElem reflect.Type var keyFn, valFn *codecFn var ktypeLo, vtypeLo reflect.Type for ktypeLo = ktype; ktypeLo.Kind() == reflect.Ptr; ktypeLo = ktypeLo.Elem() { } for vtypeLo = vtype; vtypeLo.Kind() == reflect.Ptr; vtypeLo = vtypeLo.Elem() { } rvvMut := !isImmutableKind(vtypeKind) // we do a doMapGet if kind is mutable, and InterfaceReset=true if interface var doMapGet, doMapSet bool if !d.h.MapValueReset { if rvvMut { if vtypeKind == reflect.Interface { if !d.h.InterfaceReset { doMapGet = true } } else { doMapGet = true } } } var rvk, rvkn, rvv, rvvn, rvva reflect.Value var rvvaSet bool rvkMut := !isImmutableKind(ktype.Kind()) // if ktype is immutable, then re-use the same rvk. ktypeIsString := ktypeId == stringTypId ktypeIsIntf := ktypeId == intfTypId hasLen := containerLen > 0 var kstrbs []byte for j := 0; (hasLen && j < containerLen) || !(hasLen || d.checkBreak()); j++ { if j == 0 { if !rvkMut { rvkn = rvZeroAddrK(ktype, ktypeKind) } if !rvvMut { rvvn = rvZeroAddrK(vtype, vtypeKind) } } if rvkMut { rvk = rvZeroAddrK(ktype, ktypeKind) } else { rvk = rvkn } d.mapElemKey() if ktypeIsString { kstrbs = d.d.DecodeStringAsBytes() rvk.SetString(stringView(kstrbs)) // NOTE: if doing an insert, use real string (not stringview) } else { if keyFn == nil { keyFn = d.h.fn(ktypeLo) } d.decodeValue(rvk, keyFn) } // special case if interface wrapping a byte array. if ktypeIsIntf { if rvk2 := rvk.Elem(); rvk2.IsValid() && rvk2.Type() == uint8SliceTyp { rvk.Set(rv4i(d.string(rvGetBytes(rvk2)))) } // NOTE: consider failing early if map/slice/func } d.mapElemValue() doMapSet = true // set to false if u do a get, and its a non-nil pointer if doMapGet { if !rvvaSet { rvva = mapAddressableRV(vtype, vtypeKind) rvvaSet = true } rvv = mapGet(rv, rvk, rvva) // reflect.Value{}) if vtypeKind == reflect.Ptr { if rvv.IsValid() && !rvIsNil(rvv) { doMapSet = false } else { if vtypeElem == nil { vtypeElem = vtype.Elem() } rvv = reflect.New(vtypeElem) } } else if rvv.IsValid() && vtypeKind == reflect.Interface && !rvIsNil(rvv) { rvvn = rvZeroAddrK(vtype, vtypeKind) rvvn.Set(rvv) rvv = rvvn } else if rvvMut { rvv = rvZeroAddrK(vtype, vtypeKind) } else { rvv = rvvn } } else if rvvMut { rvv = rvZeroAddrK(vtype, vtypeKind) } else { rvv = rvvn } if valFn == nil { valFn = d.h.fn(vtypeLo) } // We MUST be done with the stringview of the key, BEFORE decoding the value (rvv) // so that we don't unknowingly reuse the rvk backing buffer during rvv decode. if doMapSet && ktypeIsString { // set to a real string (not string view) rvk.SetString(d.string(kstrbs)) } d.decodeValue(rvv, valFn) if doMapSet { mapSet(rv, rvk, rvv) } } d.mapEnd() } // decNaked is used to keep track of the primitives decoded. // Without it, we would have to decode each primitive and wrap it // in an interface{}, causing an allocation. // In this model, the primitives are decoded in a "pseudo-atomic" fashion, // so we can rest assured that no other decoding happens while these // primitives are being decoded. // // maps and arrays are not handled by this mechanism. // However, RawExt is, and we accommodate for extensions that decode // RawExt from DecodeNaked, but need to decode the value subsequently. // kInterfaceNaked and swallow, which call DecodeNaked, handle this caveat. // // However, decNaked also keeps some arrays of default maps and slices // used in DecodeNaked. This way, we can get a pointer to it // without causing a new heap allocation. // // kInterfaceNaked will ensure that there is no allocation for the common // uses. type decNaked struct { // r RawExt // used for RawExt, uint, []byte. // primitives below u uint64 i int64 f float64 l []byte s string // ---- cpu cache line boundary? t time.Time b bool // state v valueType } // Decoder reads and decodes an object from an input stream in a supported format. // // Decoder is NOT safe for concurrent use i.e. a Decoder cannot be used // concurrently in multiple goroutines. // // However, as Decoder could be allocation heavy to initialize, a Reset method is provided // so its state can be reused to decode new input streams repeatedly. // This is the idiomatic way to use. type Decoder struct { panicHdl // hopefully, reduce derefencing cost by laying the decReader inside the Decoder. // Try to put things that go together to fit within a cache line (8 words). d decDriver // cache the mapTypeId and sliceTypeId for faster comparisons mtid uintptr stid uintptr h *BasicHandle blist bytesFreelist // ---- cpu cache line boundary? decRd // ---- cpu cache line boundary? n decNaked hh Handle err error // ---- cpu cache line boundary? is map[string]string // used for interning strings // ---- writable fields during execution --- *try* to keep in sep cache line maxdepth int16 depth int16 // Extensions can call Decode() within a current Decode() call. // We need to know when the top level Decode() call returns, // so we can decide whether to Release() or not. calls uint16 // what depth in mustDecode are we in now. c containerState _ [1]byte // padding // ---- cpu cache line boundary? // b is an always-available scratch buffer used by Decoder and decDrivers. // By being always-available, it can be used for one-off things without // having to get from freelist, use, and return back to freelist. b [decScratchByteArrayLen]byte } // NewDecoder returns a Decoder for decoding a stream of bytes from an io.Reader. // // For efficiency, Users are encouraged to configure ReaderBufferSize on the handle // OR pass in a memory buffered reader (eg bufio.Reader, bytes.Buffer). func NewDecoder(r io.Reader, h Handle) *Decoder { d := h.newDecDriver().decoder() d.Reset(r) return d } // NewDecoderBytes returns a Decoder which efficiently decodes directly // from a byte slice with zero copying. func NewDecoderBytes(in []byte, h Handle) *Decoder { d := h.newDecDriver().decoder() d.ResetBytes(in) return d } func (d *Decoder) r() *decRd { return &d.decRd } func (d *Decoder) init(h Handle) { d.bytes = true d.err = errDecoderNotInitialized d.h = basicHandle(h) d.hh = h d.be = h.isBinary() // NOTE: do not initialize d.n here. It is lazily initialized in d.naked() if d.h.InternString { d.is = make(map[string]string, 32) } } func (d *Decoder) resetCommon() { d.d.reset() d.err = nil d.depth = 0 d.calls = 0 d.maxdepth = d.h.MaxDepth if d.maxdepth <= 0 { d.maxdepth = decDefMaxDepth } // reset all things which were cached from the Handle, but could change d.mtid, d.stid = 0, 0 d.mtr, d.str = false, false if d.h.MapType != nil { d.mtid = rt2id(d.h.MapType) d.mtr = fastpathAV.index(d.mtid) != -1 } if d.h.SliceType != nil { d.stid = rt2id(d.h.SliceType) d.str = fastpathAV.index(d.stid) != -1 } } // Reset the Decoder with a new Reader to decode from, // clearing all state from last run(s). func (d *Decoder) Reset(r io.Reader) { if r == nil { return } d.bytes = false if d.h.ReaderBufferSize > 0 { if d.bi == nil { d.bi = new(bufioDecReader) } d.bi.reset(r, d.h.ReaderBufferSize, &d.blist) d.bufio = true } else { if d.ri == nil { d.ri = new(ioDecReader) } d.ri.reset(r, &d.blist) d.bufio = false } d.resetCommon() } // ResetBytes resets the Decoder with a new []byte to decode from, // clearing all state from last run(s). func (d *Decoder) ResetBytes(in []byte) { if in == nil { return } d.bytes = true d.bufio = false d.rb.reset(in) d.resetCommon() } func (d *Decoder) naked() *decNaked { return &d.n } // Decode decodes the stream from reader and stores the result in the // value pointed to by v. v cannot be a nil pointer. v can also be // a reflect.Value of a pointer. // // Note that a pointer to a nil interface is not a nil pointer. // If you do not know what type of stream it is, pass in a pointer to a nil interface. // We will decode and store a value in that nil interface. // // Sample usages: // // Decoding into a non-nil typed value // var f float32 // err = codec.NewDecoder(r, handle).Decode(&f) // // // Decoding into nil interface // var v interface{} // dec := codec.NewDecoder(r, handle) // err = dec.Decode(&v) // // When decoding into a nil interface{}, we will decode into an appropriate value based // on the contents of the stream: // - Numbers are decoded as float64, int64 or uint64. // - Other values are decoded appropriately depending on the type: // bool, string, []byte, time.Time, etc // - Extensions are decoded as RawExt (if no ext function registered for the tag) // Configurations exist on the Handle to override defaults // (e.g. for MapType, SliceType and how to decode raw bytes). // // When decoding into a non-nil interface{} value, the mode of encoding is based on the // type of the value. When a value is seen: // - If an extension is registered for it, call that extension function // - If it implements BinaryUnmarshaler, call its UnmarshalBinary(data []byte) error // - Else decode it based on its reflect.Kind // // There are some special rules when decoding into containers (slice/array/map/struct). // Decode will typically use the stream contents to UPDATE the container i.e. the values // in these containers will not be zero'ed before decoding. // - A map can be decoded from a stream map, by updating matching keys. // - A slice can be decoded from a stream array, // by updating the first n elements, where n is length of the stream. // - A slice can be decoded from a stream map, by decoding as if // it contains a sequence of key-value pairs. // - A struct can be decoded from a stream map, by updating matching fields. // - A struct can be decoded from a stream array, // by updating fields as they occur in the struct (by index). // // This in-place update maintains consistency in the decoding philosophy (i.e. we ALWAYS update // in place by default). However, the consequence of this is that values in slices or maps // which are not zero'ed before hand, will have part of the prior values in place after decode // if the stream doesn't contain an update for those parts. // // This in-place update can be disabled by configuring the MapValueReset and SliceElementReset // decode options available on every handle. // // Furthermore, when decoding a stream map or array with length of 0 into a nil map or slice, // we reset the destination map or slice to a zero-length value. // // However, when decoding a stream nil, we reset the destination container // to its "zero" value (e.g. nil for slice/map, etc). // // Note: we allow nil values in the stream anywhere except for map keys. // A nil value in the encoded stream where a map key is expected is treated as an error. func (d *Decoder) Decode(v interface{}) (err error) { // tried to use closure, as runtime optimizes defer with no params. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc). // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139 // defer func() { d.deferred(&err) }() // { x, y := d, &err; defer func() { x.deferred(y) }() } if d.err != nil { return d.err } if recoverPanicToErr { defer func() { if x := recover(); x != nil { panicValToErr(d, x, &d.err) if d.err != err { err = d.err } } }() } // defer d.deferred(&err) d.mustDecode(v) return } // MustDecode is like Decode, but panics if unable to Decode. // This provides insight to the code location that triggered the error. func (d *Decoder) MustDecode(v interface{}) { if d.err != nil { panic(d.err) } d.mustDecode(v) } // MustDecode is like Decode, but panics if unable to Decode. // This provides insight to the code location that triggered the error. func (d *Decoder) mustDecode(v interface{}) { // Top-level: v is a pointer and not nil. d.calls++ d.decode(v) d.calls-- if d.calls == 0 { d.d.atEndOfDecode() } } // Release releases shared (pooled) resources. // // It is important to call Release() when done with a Decoder, so those resources // are released instantly for use by subsequently created Decoders. // // By default, Release() is automatically called unless the option ExplicitRelease is set. // // Deprecated: Release is a no-op as pooled resources are not used with an Decoder. // This method is kept for compatibility reasons only. func (d *Decoder) Release() { } func (d *Decoder) swallow() { switch d.d.ContainerType() { case valueTypeNil: case valueTypeMap: containerLen := d.mapStart() hasLen := containerLen >= 0 for j := 0; (hasLen && j < containerLen) || !(hasLen || d.checkBreak()); j++ { d.mapElemKey() d.swallow() d.mapElemValue() d.swallow() } d.mapEnd() case valueTypeArray: containerLen := d.arrayStart() hasLen := containerLen >= 0 for j := 0; (hasLen && j < containerLen) || !(hasLen || d.checkBreak()); j++ { d.arrayElem() d.swallow() } d.arrayEnd() case valueTypeBytes: d.d.DecodeBytes(d.b[:], true) case valueTypeString: d.d.DecodeStringAsBytes() default: // these are all primitives, which we can get from decodeNaked // if RawExt using Value, complete the processing. n := d.naked() d.d.DecodeNaked() if n.v == valueTypeExt && n.l == nil { var v2 interface{} d.decode(&v2) } } } func setZero(iv interface{}) { if iv == nil { return } if _, ok := isNil(iv); ok { return } // var canDecode bool switch v := iv.(type) { case *string: *v = "" case *bool: *v = false case *int: *v = 0 case *int8: *v = 0 case *int16: *v = 0 case *int32: *v = 0 case *int64: *v = 0 case *uint: *v = 0 case *uint8: *v = 0 case *uint16: *v = 0 case *uint32: *v = 0 case *uint64: *v = 0 case *float32: *v = 0 case *float64: *v = 0 case *[]uint8: *v = nil case *Raw: *v = nil case *time.Time: *v = time.Time{} case reflect.Value: setZeroRV(v) default: if !fastpathDecodeSetZeroTypeSwitch(iv) { setZeroRV(rv4i(iv)) } } } func setZeroRV(v reflect.Value) { // It not decodeable, we do not touch it. // We considered empty'ing it if not decodeable e.g. // - if chan, drain it // - if map, clear it // - if slice or array, zero all elements up to len // // However, we decided instead that we either will set the // whole value to the zero value, or leave AS IS. if isDecodeable(v) { if v.Kind() == reflect.Ptr { v = v.Elem() } if v.CanSet() { v.Set(reflect.Zero(v.Type())) } } } func (d *Decoder) decode(iv interface{}) { // a switch with only concrete types can be optimized. // consequently, we deal with nil and interfaces outside the switch. if iv == nil { d.errorstr(errstrCannotDecodeIntoNil) return } switch v := iv.(type) { // case nil: // case Selfer: case reflect.Value: d.ensureDecodeable(v) d.decodeValue(v, nil) case *string: *v = string(d.d.DecodeStringAsBytes()) case *bool: *v = d.d.DecodeBool() case *int: *v = int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize)) case *int8: *v = int8(chkOvf.IntV(d.d.DecodeInt64(), 8)) case *int16: *v = int16(chkOvf.IntV(d.d.DecodeInt64(), 16)) case *int32: *v = int32(chkOvf.IntV(d.d.DecodeInt64(), 32)) case *int64: *v = d.d.DecodeInt64() case *uint: *v = uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize)) case *uint8: *v = uint8(chkOvf.UintV(d.d.DecodeUint64(), 8)) case *uint16: *v = uint16(chkOvf.UintV(d.d.DecodeUint64(), 16)) case *uint32: *v = uint32(chkOvf.UintV(d.d.DecodeUint64(), 32)) case *uint64: *v = d.d.DecodeUint64() case *float32: *v = float32(d.decodeFloat32()) case *float64: *v = d.d.DecodeFloat64() case *[]uint8: *v = d.d.DecodeBytes(*v, false) case []uint8: b := d.d.DecodeBytes(v, false) if !(len(b) > 0 && len(b) == len(v) && &b[0] == &v[0]) { copy(v, b) } case *time.Time: *v = d.d.DecodeTime() case *Raw: *v = d.rawBytes() case *interface{}: d.decodeValue(rv4i(iv), nil) default: if v, ok := iv.(Selfer); ok { v.CodecDecodeSelf(d) } else if !fastpathDecodeTypeSwitch(iv, d) { v := rv4i(iv) d.ensureDecodeable(v) d.decodeValue(v, nil) } } } // decodeValue MUST be called by the actual value we want to decode into, // not its addr or a reference to it. // // This way, we know if it is itself a pointer, and can handle nil in // the stream effectively. func (d *Decoder) decodeValue(rv reflect.Value, fn *codecFn) { // If stream is not containing a nil value, then we can deref to the base // non-pointer value, and decode into that. var rvp reflect.Value var rvpValid bool if rv.Kind() == reflect.Ptr { if d.d.TryNil() { if rvelem := rv.Elem(); rvelem.CanSet() { rvelem.Set(reflect.Zero(rvelem.Type())) } return } rvpValid = true for rv.Kind() == reflect.Ptr { if rvIsNil(rv) { rvSetDirect(rv, reflect.New(rv.Type().Elem())) } rvp = rv rv = rv.Elem() } } if fn == nil { fn = d.h.fn(rv.Type()) } if fn.i.addrD { if rvpValid { fn.fd(d, &fn.i, rvp) } else if rv.CanAddr() { fn.fd(d, &fn.i, rv.Addr()) } else if !fn.i.addrF { fn.fd(d, &fn.i, rv) } else { d.errorf("cannot decode into a non-pointer value") } } else { fn.fd(d, &fn.i, rv) } } func (d *Decoder) structFieldNotFound(index int, rvkencname string) { // NOTE: rvkencname may be a stringView, so don't pass it to another function. if d.h.ErrorIfNoField { if index >= 0 { d.errorf("no matching struct field found when decoding stream array at index %v", index) return } else if rvkencname != "" { d.errorf("no matching struct field found when decoding stream map with key " + rvkencname) return } } d.swallow() } func (d *Decoder) arrayCannotExpand(sliceLen, streamLen int) { if d.h.ErrorIfNoArrayExpand { d.errorf("cannot expand array len during decode from %v to %v", sliceLen, streamLen) } } func isDecodeable(rv reflect.Value) (canDecode bool) { switch rv.Kind() { case reflect.Array: return rv.CanAddr() case reflect.Ptr: if !rvIsNil(rv) { return true } case reflect.Slice, reflect.Chan, reflect.Map: if !rvIsNil(rv) { return true } } return } func (d *Decoder) ensureDecodeable(rv reflect.Value) { // decode can take any reflect.Value that is a inherently addressable i.e. // - array // - non-nil chan (we will SEND to it) // - non-nil slice (we will set its elements) // - non-nil map (we will put into it) // - non-nil pointer (we can "update" it) if isDecodeable(rv) { return } if !rv.IsValid() { d.errorstr(errstrCannotDecodeIntoNil) return } if !rv.CanInterface() { d.errorf("cannot decode into a value without an interface: %v", rv) return } rvi := rv2i(rv) rvk := rv.Kind() d.errorf("cannot decode into value of kind: %v, type: %T, %#v", rvk, rvi, rvi) } func (d *Decoder) depthIncr() { d.depth++ if d.depth >= d.maxdepth { panic(errMaxDepthExceeded) } } func (d *Decoder) depthDecr() { d.depth-- } // Possibly get an interned version of a string // // This should mostly be used for map keys, where the key type is string. // This is because keys of a map/struct are typically reused across many objects. func (d *Decoder) string(v []byte) (s string) { if v == nil { return } if d.is == nil { return string(v) // don't return stringView, as we need a real string here. } s, ok := d.is[string(v)] // no allocation here, per go implementation if !ok { s = string(v) // new allocation here d.is[s] = s } return } // nextValueBytes returns the next value in the stream as a set of bytes. func (d *Decoder) nextValueBytes() (bs []byte) { d.d.uncacheRead() d.r().track() d.swallow() bs = d.r().stopTrack() return } func (d *Decoder) rawBytes() []byte { // ensure that this is not a view into the bytes // i.e. make new copy always. bs := d.nextValueBytes() bs2 := make([]byte, len(bs)) copy(bs2, bs) return bs2 } func (d *Decoder) wrapErr(v interface{}, err *error) { *err = decodeError{codecError: codecError{name: d.hh.Name(), err: v}, pos: d.NumBytesRead()} } // NumBytesRead returns the number of bytes read func (d *Decoder) NumBytesRead() int { return int(d.r().numread()) } // decodeFloat32 will delegate to an appropriate DecodeFloat32 implementation (if exists), // else if will call DecodeFloat64 and ensure the value doesn't overflow. // // Note that we return float64 to reduce unnecessary conversions func (d *Decoder) decodeFloat32() float32 { if d.js { return d.jsondriver().DecodeFloat32() // custom implementation for 32-bit } return float32(chkOvf.Float32V(d.d.DecodeFloat64())) } // ---- container tracking // Note: We update the .c after calling the callback. // This way, the callback can know what the last status was. // Note: if you call mapStart and it returns decContainerLenNil, // then do NOT call mapEnd. func (d *Decoder) mapStart() (v int) { v = d.d.ReadMapStart() if v != decContainerLenNil { d.depthIncr() d.c = containerMapStart } return } func (d *Decoder) mapElemKey() { if d.js { d.jsondriver().ReadMapElemKey() } d.c = containerMapKey } func (d *Decoder) mapElemValue() { if d.js { d.jsondriver().ReadMapElemValue() } d.c = containerMapValue } func (d *Decoder) mapEnd() { d.d.ReadMapEnd() d.depthDecr() // d.c = containerMapEnd d.c = 0 } func (d *Decoder) arrayStart() (v int) { v = d.d.ReadArrayStart() if v != decContainerLenNil { d.depthIncr() d.c = containerArrayStart } return } func (d *Decoder) arrayElem() { if d.js { d.jsondriver().ReadArrayElem() } d.c = containerArrayElem } func (d *Decoder) arrayEnd() { d.d.ReadArrayEnd() d.depthDecr() // d.c = containerArrayEnd d.c = 0 } func (d *Decoder) interfaceExtConvertAndDecode(v interface{}, ext Ext) { // var v interface{} = ext.ConvertExt(rv) // d.d.decode(&v) // ext.UpdateExt(rv, v) // assume v is a pointer: // - if struct|array, pass as is to ConvertExt // - else make it non-addressable and pass to ConvertExt // - make return value from ConvertExt addressable // - decode into it // - return the interface for passing into UpdateExt. // - interface should be a pointer if struct|array, else a value var s interface{} rv := rv4i(v) rv2 := rv.Elem() rvk := rv2.Kind() if rvk == reflect.Struct || rvk == reflect.Array { s = ext.ConvertExt(v) } else { s = ext.ConvertExt(rv2i(rv2)) } rv = rv4i(s) if !rv.CanAddr() { if rv.Kind() == reflect.Ptr { rv2 = reflect.New(rv.Type().Elem()) } else { rv2 = rvZeroAddrK(rv.Type(), rv.Kind()) } rvSetDirect(rv2, rv) rv = rv2 } d.decodeValue(rv, nil) ext.UpdateExt(v, rv2i(rv)) } func (d *Decoder) sideDecode(v interface{}, bs []byte) { rv := baseRV(v) NewDecoderBytes(bs, d.hh).decodeValue(rv, d.h.fnNoExt(rv.Type())) } // -------------------------------------------------- // decSliceHelper assists when decoding into a slice, from a map or an array in the stream. // A slice can be set from a map or array in stream. This supports the MapBySlice interface. // // Note: if IsNil, do not call ElemContainerState. type decSliceHelper struct { d *Decoder ct valueType Array bool IsNil bool } func (d *Decoder) decSliceHelperStart() (x decSliceHelper, clen int) { x.ct = d.d.ContainerType() x.d = d switch x.ct { case valueTypeNil: x.IsNil = true case valueTypeArray: x.Array = true clen = d.arrayStart() case valueTypeMap: clen = d.mapStart() * 2 default: d.errorf("only encoded map or array can be decoded into a slice (%d)", x.ct) } return } func (x decSliceHelper) End() { if x.IsNil { } else if x.Array { x.d.arrayEnd() } else { x.d.mapEnd() } } func (x decSliceHelper) ElemContainerState(index int) { // Note: if isnil, clen=0, so we never call into ElemContainerState if x.Array { x.d.arrayElem() } else { if index%2 == 0 { x.d.mapElemKey() } else { x.d.mapElemValue() } } } func decByteSlice(r *decRd, clen, maxInitLen int, bs []byte) (bsOut []byte) { if clen == 0 { return zeroByteSlice } if len(bs) == clen { bsOut = bs r.readb(bsOut) } else if cap(bs) >= clen { bsOut = bs[:clen] r.readb(bsOut) } else { len2 := decInferLen(clen, maxInitLen, 1) bsOut = make([]byte, len2) r.readb(bsOut) for len2 < clen { len3 := decInferLen(clen-len2, maxInitLen, 1) bs3 := bsOut bsOut = make([]byte, len2+len3) copy(bsOut, bs3) r.readb(bsOut[len2:]) len2 += len3 } } return } // detachZeroCopyBytes will copy the in bytes into dest, // or create a new one if not large enough. // // It is used to ensure that the []byte returned is not // part of the input stream or input stream buffers. func detachZeroCopyBytes(isBytesReader bool, dest []byte, in []byte) (out []byte) { if len(in) > 0 { // if isBytesReader || len(in) <= scratchByteArrayLen { // if cap(dest) >= len(in) { // out = dest[:len(in)] // } else { // out = make([]byte, len(in)) // } // copy(out, in) // return // } if cap(dest) >= len(in) { out = dest[:len(in)] } else { out = make([]byte, len(in)) } copy(out, in) return } return in } // decInferLen will infer a sensible length, given the following: // - clen: length wanted. // - maxlen: max length to be returned. // if <= 0, it is unset, and we infer it based on the unit size // - unit: number of bytes for each element of the collection func decInferLen(clen, maxlen, unit int) (rvlen int) { const maxLenIfUnset = 8 // 64 // handle when maxlen is not set i.e. <= 0 // clen==0: use 0 // maxlen<=0, clen<0: use default // maxlen> 0, clen<0: use default // maxlen<=0, clen>0: infer maxlen, and cap on it // maxlen> 0, clen>0: cap at maxlen if clen == 0 { return } if clen < 0 { if clen == decContainerLenNil { return 0 } return maxLenIfUnset } if unit == 0 { return clen } if maxlen <= 0 { // no maxlen defined. Use maximum of 256K memory, with a floor of 4K items. // maxlen = 256 * 1024 / unit // if maxlen < (4 * 1024) { // maxlen = 4 * 1024 // } if unit < (256 / 4) { maxlen = 256 * 1024 / unit } else { maxlen = 4 * 1024 } // if maxlen > maxLenIfUnset { // maxlen = maxLenIfUnset // } } if clen > maxlen { rvlen = maxlen } else { rvlen = clen } return } func decReadFull(r io.Reader, bs []byte) (n uint, err error) { var nn int for n < uint(len(bs)) && err == nil { nn, err = r.Read(bs[n:]) if nn > 0 { if err == io.EOF { // leave EOF for next time err = nil } n += uint(nn) } } // do not do this - it serves no purpose // if n != len(bs) && err == io.EOF { err = io.ErrUnexpectedEOF } return } func decNakedReadRawBytes(dr decDriver, d *Decoder, n *decNaked, rawToString bool) { if rawToString { n.v = valueTypeString n.s = string(dr.DecodeBytes(d.b[:], true)) } else { n.v = valueTypeBytes n.l = dr.DecodeBytes(nil, false) } }