finclip-app-manager/vendor/github.com/ugorji/go/codec/decode.go

2035 lines
55 KiB
Go

// Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.
package codec
import (
"encoding"
"errors"
"fmt"
"io"
"math"
"reflect"
"strconv"
"time"
)
// Some tagging information for error messages.
const (
msgBadDesc = "unrecognized descriptor byte"
// msgDecCannotExpandArr = "cannot expand go array from %v to stream length: %v"
)
const (
decDefMaxDepth = 1024 // maximum depth
decDefSliceCap = 8
decDefChanCap = 64 // should be large, as cap cannot be expanded
decScratchByteArrayLen = (6 * 8) // ??? cacheLineSize +
// decContainerLenUnknown is length returned from Read(Map|Array)Len
// when a format doesn't know apiori.
// For example, json doesn't pre-determine the length of a container (sequence/map).
decContainerLenUnknown = -1
// decContainerLenNil is length returned from Read(Map|Array)Len
// when a 'nil' was encountered in the stream.
decContainerLenNil = math.MinInt32
// decFailNonEmptyIntf configures whether we error
// when decoding naked into a non-empty interface.
//
// Typically, we cannot decode non-nil stream value into
// nil interface with methods (e.g. io.Reader).
// However, in some scenarios, this should be allowed:
// - MapType
// - SliceType
// - Extensions
//
// Consequently, we should relax this. Put it behind a const flag for now.
decFailNonEmptyIntf = false
)
var (
errstrOnlyMapOrArrayCanDecodeIntoStruct = "only encoded map or array can be decoded into a struct"
errstrCannotDecodeIntoNil = "cannot decode into nil"
// errmsgExpandSliceOverflow = "expand slice: slice overflow"
errmsgExpandSliceCannotChange = "expand slice: cannot change"
errDecoderNotInitialized = errors.New("Decoder not initialized")
errDecUnreadByteNothingToRead = errors.New("cannot unread - nothing has been read")
errDecUnreadByteLastByteNotRead = errors.New("cannot unread - last byte has not been read")
errDecUnreadByteUnknown = errors.New("cannot unread - reason unknown")
errMaxDepthExceeded = errors.New("maximum decoding depth exceeded")
errBytesDecReaderCannotUnread = errors.New("cannot unread last byte read")
)
type decDriver interface {
// this will check if the next token is a break.
CheckBreak() bool
// TryNil tries to decode as nil.
TryNil() bool
// ContainerType returns one of: Bytes, String, Nil, Slice or Map.
//
// Return unSet if not known.
//
// Note: Implementations MUST fully consume sentinel container types, specifically Nil.
ContainerType() (vt valueType)
// DecodeNaked will decode primitives (number, bool, string, []byte) and RawExt.
// For maps and arrays, it will not do the decoding in-band, but will signal
// the decoder, so that is done later, by setting the decNaked.valueType field.
//
// Note: Numbers are decoded as int64, uint64, float64 only (no smaller sized number types).
// for extensions, DecodeNaked must read the tag and the []byte if it exists.
// if the []byte is not read, then kInterfaceNaked will treat it as a Handle
// that stores the subsequent value in-band, and complete reading the RawExt.
//
// extensions should also use readx to decode them, for efficiency.
// kInterface will extract the detached byte slice if it has to pass it outside its realm.
DecodeNaked()
DecodeInt64() (i int64)
DecodeUint64() (ui uint64)
DecodeFloat64() (f float64)
DecodeBool() (b bool)
// DecodeStringAsBytes returns the bytes representing a string.
// By definition, it will return a view into a scratch buffer.
//
// Note: This can also decode symbols, if supported.
//
// Users should consume it right away and not store it for later use.
DecodeStringAsBytes() (v []byte)
// DecodeBytes may be called directly, without going through reflection.
// Consequently, it must be designed to handle possible nil.
DecodeBytes(bs []byte, zerocopy bool) (bsOut []byte)
// DecodeBytes(bs []byte, isstring, zerocopy bool) (bsOut []byte)
// DecodeExt will decode into a *RawExt or into an extension.
DecodeExt(v interface{}, xtag uint64, ext Ext)
// decodeExt(verifyTag bool, tag byte) (xtag byte, xbs []byte)
DecodeTime() (t time.Time)
// ReadArrayStart will return the length of the array.
// If the format doesn't prefix the length, it returns decContainerLenUnknown.
// If the expected array was a nil in the stream, it returns decContainerLenNil.
ReadArrayStart() int
ReadArrayEnd()
// ReadMapStart will return the length of the array.
// If the format doesn't prefix the length, it returns decContainerLenUnknown.
// If the expected array was a nil in the stream, it returns decContainerLenNil.
ReadMapStart() int
ReadMapEnd()
reset()
atEndOfDecode()
uncacheRead()
decoder() *Decoder
}
type decDriverContainerTracker interface {
ReadArrayElem()
ReadMapElemKey()
ReadMapElemValue()
}
type decodeError struct {
codecError
pos int
}
func (d decodeError) Error() string {
return fmt.Sprintf("%s decode error [pos %d]: %v", d.name, d.pos, d.err)
}
type decDriverNoopContainerReader struct{}
func (x decDriverNoopContainerReader) ReadArrayStart() (v int) { return }
func (x decDriverNoopContainerReader) ReadArrayEnd() {}
func (x decDriverNoopContainerReader) ReadMapStart() (v int) { return }
func (x decDriverNoopContainerReader) ReadMapEnd() {}
func (x decDriverNoopContainerReader) CheckBreak() (v bool) { return }
func (x decDriverNoopContainerReader) atEndOfDecode() {}
// DecodeOptions captures configuration options during decode.
type DecodeOptions struct {
// MapType specifies type to use during schema-less decoding of a map in the stream.
// If nil (unset), we default to map[string]interface{} iff json handle and MapStringAsKey=true,
// else map[interface{}]interface{}.
MapType reflect.Type
// SliceType specifies type to use during schema-less decoding of an array in the stream.
// If nil (unset), we default to []interface{} for all formats.
SliceType reflect.Type
// MaxInitLen defines the maxinum initial length that we "make" a collection
// (string, slice, map, chan). If 0 or negative, we default to a sensible value
// based on the size of an element in the collection.
//
// For example, when decoding, a stream may say that it has 2^64 elements.
// We should not auto-matically provision a slice of that size, to prevent Out-Of-Memory crash.
// Instead, we provision up to MaxInitLen, fill that up, and start appending after that.
MaxInitLen int
// ReaderBufferSize is the size of the buffer used when reading.
//
// if > 0, we use a smart buffer internally for performance purposes.
ReaderBufferSize int
// MaxDepth defines the maximum depth when decoding nested
// maps and slices. If 0 or negative, we default to a suitably large number (currently 1024).
MaxDepth int16
// If ErrorIfNoField, return an error when decoding a map
// from a codec stream into a struct, and no matching struct field is found.
ErrorIfNoField bool
// If ErrorIfNoArrayExpand, return an error when decoding a slice/array that cannot be expanded.
// For example, the stream contains an array of 8 items, but you are decoding into a [4]T array,
// or you are decoding into a slice of length 4 which is non-addressable (and so cannot be set).
ErrorIfNoArrayExpand bool
// If SignedInteger, use the int64 during schema-less decoding of unsigned values (not uint64).
SignedInteger bool
// MapValueReset controls how we decode into a map value.
//
// By default, we MAY retrieve the mapping for a key, and then decode into that.
// However, especially with big maps, that retrieval may be expensive and unnecessary
// if the stream already contains all that is necessary to recreate the value.
//
// If true, we will never retrieve the previous mapping,
// but rather decode into a new value and set that in the map.
//
// If false, we will retrieve the previous mapping if necessary e.g.
// the previous mapping is a pointer, or is a struct or array with pre-set state,
// or is an interface.
MapValueReset bool
// SliceElementReset: on decoding a slice, reset the element to a zero value first.
//
// concern: if the slice already contained some garbage, we will decode into that garbage.
SliceElementReset bool
// InterfaceReset controls how we decode into an interface.
//
// By default, when we see a field that is an interface{...},
// or a map with interface{...} value, we will attempt decoding into the
// "contained" value.
//
// However, this prevents us from reading a string into an interface{}
// that formerly contained a number.
//
// If true, we will decode into a new "blank" value, and set that in the interface.
// If false, we will decode into whatever is contained in the interface.
InterfaceReset bool
// InternString controls interning of strings during decoding.
//
// Some handles, e.g. json, typically will read map keys as strings.
// If the set of keys are finite, it may help reduce allocation to
// look them up from a map (than to allocate them afresh).
//
// Note: Handles will be smart when using the intern functionality.
// Every string should not be interned.
// An excellent use-case for interning is struct field names,
// or map keys where key type is string.
InternString bool
// PreferArrayOverSlice controls whether to decode to an array or a slice.
//
// This only impacts decoding into a nil interface{}.
//
// Consequently, it has no effect on codecgen.
//
// *Note*: This only applies if using go1.5 and above,
// as it requires reflect.ArrayOf support which was absent before go1.5.
PreferArrayOverSlice bool
// DeleteOnNilMapValue controls how to decode a nil value in the stream.
//
// If true, we will delete the mapping of the key.
// Else, just set the mapping to the zero value of the type.
//
// Deprecated: This does NOTHING and is left behind for compiling compatibility.
// This change is necessitated because 'nil' in a stream now consistently
// means the zero value (ie reset the value to its zero state).
DeleteOnNilMapValue bool
// RawToString controls how raw bytes in a stream are decoded into a nil interface{}.
// By default, they are decoded as []byte, but can be decoded as string (if configured).
RawToString bool
}
// ----------------------------------------
func (d *Decoder) rawExt(f *codecFnInfo, rv reflect.Value) {
d.d.DecodeExt(rv2i(rv), 0, nil)
}
func (d *Decoder) ext(f *codecFnInfo, rv reflect.Value) {
d.d.DecodeExt(rv2i(rv), f.xfTag, f.xfFn)
}
func (d *Decoder) selferUnmarshal(f *codecFnInfo, rv reflect.Value) {
rv2i(rv).(Selfer).CodecDecodeSelf(d)
}
func (d *Decoder) binaryUnmarshal(f *codecFnInfo, rv reflect.Value) {
bm := rv2i(rv).(encoding.BinaryUnmarshaler)
xbs := d.d.DecodeBytes(nil, true)
if fnerr := bm.UnmarshalBinary(xbs); fnerr != nil {
panic(fnerr)
}
}
func (d *Decoder) textUnmarshal(f *codecFnInfo, rv reflect.Value) {
tm := rv2i(rv).(encoding.TextUnmarshaler)
fnerr := tm.UnmarshalText(d.d.DecodeStringAsBytes())
if fnerr != nil {
panic(fnerr)
}
}
func (d *Decoder) jsonUnmarshal(f *codecFnInfo, rv reflect.Value) {
tm := rv2i(rv).(jsonUnmarshaler)
// bs := d.d.DecodeBytes(d.b[:], true, true)
// grab the bytes to be read, as UnmarshalJSON needs the full JSON so as to unmarshal it itself.
fnerr := tm.UnmarshalJSON(d.nextValueBytes())
if fnerr != nil {
panic(fnerr)
}
}
func (d *Decoder) kErr(f *codecFnInfo, rv reflect.Value) {
d.errorf("no decoding function defined for kind %v", rv.Kind())
}
func (d *Decoder) raw(f *codecFnInfo, rv reflect.Value) {
rvSetBytes(rv, d.rawBytes())
}
func (d *Decoder) kString(f *codecFnInfo, rv reflect.Value) {
rvSetString(rv, string(d.d.DecodeStringAsBytes()))
}
func (d *Decoder) kBool(f *codecFnInfo, rv reflect.Value) {
rvSetBool(rv, d.d.DecodeBool())
}
func (d *Decoder) kTime(f *codecFnInfo, rv reflect.Value) {
rvSetTime(rv, d.d.DecodeTime())
}
func (d *Decoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
rvSetFloat32(rv, d.decodeFloat32())
}
func (d *Decoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
rvSetFloat64(rv, d.d.DecodeFloat64())
}
func (d *Decoder) kInt(f *codecFnInfo, rv reflect.Value) {
rvSetInt(rv, int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize)))
}
func (d *Decoder) kInt8(f *codecFnInfo, rv reflect.Value) {
rvSetInt8(rv, int8(chkOvf.IntV(d.d.DecodeInt64(), 8)))
}
func (d *Decoder) kInt16(f *codecFnInfo, rv reflect.Value) {
rvSetInt16(rv, int16(chkOvf.IntV(d.d.DecodeInt64(), 16)))
}
func (d *Decoder) kInt32(f *codecFnInfo, rv reflect.Value) {
rvSetInt32(rv, int32(chkOvf.IntV(d.d.DecodeInt64(), 32)))
}
func (d *Decoder) kInt64(f *codecFnInfo, rv reflect.Value) {
rvSetInt64(rv, d.d.DecodeInt64())
}
func (d *Decoder) kUint(f *codecFnInfo, rv reflect.Value) {
rvSetUint(rv, uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize)))
}
func (d *Decoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
rvSetUintptr(rv, uintptr(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize)))
}
func (d *Decoder) kUint8(f *codecFnInfo, rv reflect.Value) {
rvSetUint8(rv, uint8(chkOvf.UintV(d.d.DecodeUint64(), 8)))
}
func (d *Decoder) kUint16(f *codecFnInfo, rv reflect.Value) {
rvSetUint16(rv, uint16(chkOvf.UintV(d.d.DecodeUint64(), 16)))
}
func (d *Decoder) kUint32(f *codecFnInfo, rv reflect.Value) {
rvSetUint32(rv, uint32(chkOvf.UintV(d.d.DecodeUint64(), 32)))
}
func (d *Decoder) kUint64(f *codecFnInfo, rv reflect.Value) {
rvSetUint64(rv, d.d.DecodeUint64())
}
func (d *Decoder) kInterfaceNaked(f *codecFnInfo) (rvn reflect.Value) {
// nil interface:
// use some hieristics to decode it appropriately
// based on the detected next value in the stream.
n := d.naked()
d.d.DecodeNaked()
// We cannot decode non-nil stream value into nil interface with methods (e.g. io.Reader).
// Howver, it is possible that the user has ways to pass in a type for a given interface
// - MapType
// - SliceType
// - Extensions
//
// Consequently, we should relax this. Put it behind a const flag for now.
if decFailNonEmptyIntf && f.ti.numMeth > 0 {
d.errorf("cannot decode non-nil codec value into nil %v (%v methods)", f.ti.rt, f.ti.numMeth)
return
}
switch n.v {
case valueTypeMap:
// if json, default to a map type with string keys
mtid := d.mtid
if mtid == 0 {
if d.jsms {
mtid = mapStrIntfTypId
} else {
mtid = mapIntfIntfTypId
}
}
if mtid == mapIntfIntfTypId {
var v2 map[interface{}]interface{}
d.decode(&v2)
rvn = rv4i(&v2).Elem()
} else if mtid == mapStrIntfTypId { // for json performance
var v2 map[string]interface{}
d.decode(&v2)
rvn = rv4i(&v2).Elem()
} else {
if d.mtr {
rvn = reflect.New(d.h.MapType)
d.decode(rv2i(rvn))
rvn = rvn.Elem()
} else {
rvn = rvZeroAddrK(d.h.MapType, reflect.Map)
d.decodeValue(rvn, nil)
}
}
case valueTypeArray:
if d.stid == 0 || d.stid == intfSliceTypId {
var v2 []interface{}
d.decode(&v2)
rvn = rv4i(&v2).Elem()
} else {
if d.str {
rvn = reflect.New(d.h.SliceType)
d.decode(rv2i(rvn))
rvn = rvn.Elem()
} else {
rvn = rvZeroAddrK(d.h.SliceType, reflect.Slice)
d.decodeValue(rvn, nil)
}
}
if reflectArrayOfSupported && d.h.PreferArrayOverSlice {
rvn = rvGetArray4Slice(rvn)
}
case valueTypeExt:
tag, bytes := n.u, n.l // calling decode below might taint the values
bfn := d.h.getExtForTag(tag)
var re = RawExt{Tag: tag}
if bytes == nil {
// it is one of the InterfaceExt ones: json and cbor.
// most likely cbor, as json decoding never reveals valueTypeExt (no tagging support)
if bfn == nil {
d.decode(&re.Value)
rvn = rv4i(&re).Elem()
} else {
if bfn.ext == SelfExt {
rvn = rvZeroAddrK(bfn.rt, bfn.rt.Kind())
d.decodeValue(rvn, d.h.fnNoExt(bfn.rt))
} else {
rvn = reflect.New(bfn.rt)
d.interfaceExtConvertAndDecode(rv2i(rvn), bfn.ext)
rvn = rvn.Elem()
}
}
} else {
// one of the BytesExt ones: binc, msgpack, simple
if bfn == nil {
re.Data = detachZeroCopyBytes(d.bytes, nil, bytes)
rvn = rv4i(&re).Elem()
} else {
rvn = reflect.New(bfn.rt)
if bfn.ext == SelfExt {
d.sideDecode(rv2i(rvn), bytes)
} else {
bfn.ext.ReadExt(rv2i(rvn), bytes)
}
rvn = rvn.Elem()
}
}
case valueTypeNil:
// rvn = reflect.Zero(f.ti.rt)
// no-op
case valueTypeInt:
rvn = n.ri()
case valueTypeUint:
rvn = n.ru()
case valueTypeFloat:
rvn = n.rf()
case valueTypeBool:
rvn = n.rb()
case valueTypeString, valueTypeSymbol:
rvn = n.rs()
case valueTypeBytes:
rvn = n.rl()
case valueTypeTime:
rvn = n.rt()
default:
panicv.errorf("kInterfaceNaked: unexpected valueType: %d", n.v)
}
return
}
func (d *Decoder) kInterface(f *codecFnInfo, rv reflect.Value) {
// Note:
// A consequence of how kInterface works, is that
// if an interface already contains something, we try
// to decode into what was there before.
// We do not replace with a generic value (as got from decodeNaked).
// every interface passed here MUST be settable.
var rvn reflect.Value
if rvIsNil(rv) || d.h.InterfaceReset {
// check if mapping to a type: if so, initialize it and move on
rvn = d.h.intf2impl(f.ti.rtid)
if rvn.IsValid() {
rv.Set(rvn)
} else {
rvn = d.kInterfaceNaked(f)
// xdebugf("kInterface: %v", rvn)
if rvn.IsValid() {
rv.Set(rvn)
} else if d.h.InterfaceReset {
// reset to zero value based on current type in there.
if rvelem := rv.Elem(); rvelem.IsValid() {
rv.Set(reflect.Zero(rvelem.Type()))
}
}
return
}
} else {
// now we have a non-nil interface value, meaning it contains a type
rvn = rv.Elem()
}
// Note: interface{} is settable, but underlying type may not be.
// Consequently, we MAY have to create a decodable value out of the underlying value,
// decode into it, and reset the interface itself.
// fmt.Printf(">>>> kInterface: rvn type: %v, rv type: %v\n", rvn.Type(), rv.Type())
if isDecodeable(rvn) {
d.decodeValue(rvn, nil)
return
}
rvn2 := rvZeroAddrK(rvn.Type(), rvn.Kind())
rvSetDirect(rvn2, rvn)
d.decodeValue(rvn2, nil)
rv.Set(rvn2)
}
func decStructFieldKey(dd decDriver, keyType valueType, b *[decScratchByteArrayLen]byte) (rvkencname []byte) {
// use if-else-if, not switch (which compiles to binary-search)
// since keyType is typically valueTypeString, branch prediction is pretty good.
if keyType == valueTypeString {
rvkencname = dd.DecodeStringAsBytes()
} else if keyType == valueTypeInt {
rvkencname = strconv.AppendInt(b[:0], dd.DecodeInt64(), 10)
} else if keyType == valueTypeUint {
rvkencname = strconv.AppendUint(b[:0], dd.DecodeUint64(), 10)
} else if keyType == valueTypeFloat {
rvkencname = strconv.AppendFloat(b[:0], dd.DecodeFloat64(), 'f', -1, 64)
} else {
rvkencname = dd.DecodeStringAsBytes()
}
return
}
func (d *Decoder) kStruct(f *codecFnInfo, rv reflect.Value) {
sfn := structFieldNode{v: rv, update: true}
ctyp := d.d.ContainerType()
if ctyp == valueTypeNil {
rvSetDirect(rv, f.ti.rv0)
return
}
var mf MissingFielder
if f.ti.isFlag(tiflagMissingFielder) {
mf = rv2i(rv).(MissingFielder)
} else if f.ti.isFlag(tiflagMissingFielderPtr) {
mf = rv2i(rv.Addr()).(MissingFielder)
}
if ctyp == valueTypeMap {
containerLen := d.mapStart()
if containerLen == 0 {
d.mapEnd()
return
}
tisfi := f.ti.sfiSort
hasLen := containerLen >= 0
var rvkencname []byte
for j := 0; (hasLen && j < containerLen) || !(hasLen || d.checkBreak()); j++ {
d.mapElemKey()
rvkencname = decStructFieldKey(d.d, f.ti.keyType, &d.b)
d.mapElemValue()
if k := f.ti.indexForEncName(rvkencname); k > -1 {
si := tisfi[k]
d.decodeValue(sfn.field(si), nil)
} else if mf != nil {
// store rvkencname in new []byte, as it previously shares Decoder.b, which is used in decode
name2 := rvkencname
rvkencname = make([]byte, len(rvkencname))
copy(rvkencname, name2)
var f interface{}
d.decode(&f)
if !mf.CodecMissingField(rvkencname, f) && d.h.ErrorIfNoField {
d.errorf("no matching struct field found when decoding stream map with key: %s ",
stringView(rvkencname))
}
} else {
d.structFieldNotFound(-1, stringView(rvkencname))
}
// keepAlive4StringView(rvkencnameB) // not needed, as reference is outside loop
}
d.mapEnd()
} else if ctyp == valueTypeArray {
containerLen := d.arrayStart()
if containerLen == 0 {
d.arrayEnd()
return
}
// Not much gain from doing it two ways for array.
// Arrays are not used as much for structs.
hasLen := containerLen >= 0
var checkbreak bool
for j, si := range f.ti.sfiSrc {
if hasLen && j == containerLen {
break
}
if !hasLen && d.checkBreak() {
checkbreak = true
break
}
d.arrayElem()
d.decodeValue(sfn.field(si), nil)
}
if (hasLen && containerLen > len(f.ti.sfiSrc)) || (!hasLen && !checkbreak) {
// read remaining values and throw away
for j := len(f.ti.sfiSrc); ; j++ {
if (hasLen && j == containerLen) || (!hasLen && d.checkBreak()) {
break
}
d.arrayElem()
d.structFieldNotFound(j, "")
}
}
d.arrayEnd()
} else {
d.errorstr(errstrOnlyMapOrArrayCanDecodeIntoStruct)
return
}
}
func (d *Decoder) kSlice(f *codecFnInfo, rv reflect.Value) {
// A slice can be set from a map or array in stream.
// This way, the order can be kept (as order is lost with map).
// Note: rv is a slice type here - guaranteed
rtelem0 := f.ti.elem
ctyp := d.d.ContainerType()
if ctyp == valueTypeNil {
if rv.CanSet() {
rvSetDirect(rv, f.ti.rv0)
}
return
}
if ctyp == valueTypeBytes || ctyp == valueTypeString {
// you can only decode bytes or string in the stream into a slice or array of bytes
if !(f.ti.rtid == uint8SliceTypId || rtelem0.Kind() == reflect.Uint8) {
d.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", f.ti.rt)
}
rvbs := rvGetBytes(rv)
bs2 := d.d.DecodeBytes(rvbs, false)
// if rvbs == nil && bs2 != nil || rvbs != nil && bs2 == nil || len(bs2) != len(rvbs) {
if !(len(bs2) > 0 && len(bs2) == len(rvbs) && &bs2[0] == &rvbs[0]) {
if rv.CanSet() {
rvSetBytes(rv, bs2)
} else if len(rvbs) > 0 && len(bs2) > 0 {
copy(rvbs, bs2)
}
}
return
}
slh, containerLenS := d.decSliceHelperStart() // only expects valueType(Array|Map) - never Nil
// an array can never return a nil slice. so no need to check f.array here.
if containerLenS == 0 {
if rv.CanSet() {
if rvIsNil(rv) {
rvSetDirect(rv, reflect.MakeSlice(f.ti.rt, 0, 0))
} else {
rvSetSliceLen(rv, 0)
}
}
slh.End()
return
}
rtelem0Size := int(rtelem0.Size())
rtElem0Kind := rtelem0.Kind()
rtelem0Mut := !isImmutableKind(rtElem0Kind)
rtelem := rtelem0
rtelemkind := rtelem.Kind()
for rtelemkind == reflect.Ptr {
rtelem = rtelem.Elem()
rtelemkind = rtelem.Kind()
}
var fn *codecFn
var rv0 = rv
var rvChanged bool
var rvCanset = rv.CanSet()
var rv9 reflect.Value
rvlen := rvGetSliceLen(rv)
rvcap := rvGetSliceCap(rv)
hasLen := containerLenS > 0
if hasLen {
if containerLenS > rvcap {
oldRvlenGtZero := rvlen > 0
rvlen = decInferLen(containerLenS, d.h.MaxInitLen, int(rtelem0.Size()))
if rvlen <= rvcap {
if rvCanset {
rvSetSliceLen(rv, rvlen)
}
} else if rvCanset {
rv = reflect.MakeSlice(f.ti.rt, rvlen, rvlen)
rvcap = rvlen
rvChanged = true
} else {
d.errorf("cannot decode into non-settable slice")
}
if rvChanged && oldRvlenGtZero && rtelem0Mut { // !isImmutableKind(rtelem0.Kind()) {
rvCopySlice(rv, rv0) // only copy up to length NOT cap i.e. rv0.Slice(0, rvcap)
}
} else if containerLenS != rvlen {
rvlen = containerLenS
if rvCanset {
rvSetSliceLen(rv, rvlen)
}
}
}
// consider creating new element once, and just decoding into it.
var rtelem0Zero reflect.Value
var rtelem0ZeroValid bool
var j int
for ; (hasLen && j < containerLenS) || !(hasLen || d.checkBreak()); j++ {
if j == 0 && f.seq == seqTypeSlice && rvIsNil(rv) {
if hasLen {
rvlen = decInferLen(containerLenS, d.h.MaxInitLen, rtelem0Size)
} else {
rvlen = decDefSliceCap
}
if rvCanset {
rv = reflect.MakeSlice(f.ti.rt, rvlen, rvlen)
rvcap = rvlen
rvChanged = true
} else {
d.errorf("cannot decode into non-settable slice")
}
}
slh.ElemContainerState(j)
// if indefinite, etc, then expand the slice if necessary
if j >= rvlen {
if f.seq == seqTypeArray {
d.arrayCannotExpand(rvlen, j+1)
// drain completely and return
d.swallow()
j++
for ; (hasLen && j < containerLenS) || !(hasLen || d.checkBreak()); j++ {
slh.ElemContainerState(j)
d.swallow()
}
slh.End()
return
}
// rv = reflect.Append(rv, reflect.Zero(rtelem0)) // append logic + varargs
// expand the slice up to the cap.
// Note that we did, so we have to reset it later.
if rvlen < rvcap {
if rv.CanSet() {
rvSetSliceLen(rv, rvcap)
} else if rvCanset {
rv = rvSlice(rv, rvcap)
rvChanged = true
} else {
d.errorf(errmsgExpandSliceCannotChange)
return
}
rvlen = rvcap
} else {
if !rvCanset {
d.errorf(errmsgExpandSliceCannotChange)
return
}
rvcap = growCap(rvcap, rtelem0Size, rvcap)
rv9 = reflect.MakeSlice(f.ti.rt, rvcap, rvcap)
rvCopySlice(rv9, rv)
rv = rv9
rvChanged = true
rvlen = rvcap
}
}
rv9 = rvSliceIndex(rv, j, f.ti)
if d.h.SliceElementReset {
if !rtelem0ZeroValid {
rtelem0ZeroValid = true
rtelem0Zero = reflect.Zero(rtelem0)
}
rv9.Set(rtelem0Zero)
}
if fn == nil {
fn = d.h.fn(rtelem)
}
d.decodeValue(rv9, fn)
}
if j < rvlen {
if rv.CanSet() {
rvSetSliceLen(rv, j)
} else if rvCanset {
rv = rvSlice(rv, j)
rvChanged = true
}
rvlen = j
} else if j == 0 && rvIsNil(rv) {
if rvCanset {
rv = reflect.MakeSlice(f.ti.rt, 0, 0)
rvChanged = true
}
}
slh.End()
if rvChanged { // infers rvCanset=true, so it can be reset
rv0.Set(rv)
}
}
func (d *Decoder) kSliceForChan(f *codecFnInfo, rv reflect.Value) {
// A slice can be set from a map or array in stream.
// This way, the order can be kept (as order is lost with map).
if f.ti.chandir&uint8(reflect.SendDir) == 0 {
d.errorf("receive-only channel cannot be decoded")
}
rtelem0 := f.ti.elem
ctyp := d.d.ContainerType()
if ctyp == valueTypeNil {
rvSetDirect(rv, f.ti.rv0)
return
}
if ctyp == valueTypeBytes || ctyp == valueTypeString {
// you can only decode bytes or string in the stream into a slice or array of bytes
if !(f.ti.rtid == uint8SliceTypId || rtelem0.Kind() == reflect.Uint8) {
d.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", f.ti.rt)
}
bs2 := d.d.DecodeBytes(nil, true)
irv := rv2i(rv)
ch, ok := irv.(chan<- byte)
if !ok {
ch = irv.(chan byte)
}
for _, b := range bs2 {
ch <- b
}
return
}
// only expects valueType(Array|Map - nil handled above)
slh, containerLenS := d.decSliceHelperStart()
// an array can never return a nil slice. so no need to check f.array here.
if containerLenS == 0 {
if rv.CanSet() && rvIsNil(rv) {
rvSetDirect(rv, reflect.MakeChan(f.ti.rt, 0))
}
slh.End()
return
}
rtelem0Size := int(rtelem0.Size())
rtElem0Kind := rtelem0.Kind()
rtelem0Mut := !isImmutableKind(rtElem0Kind)
rtelem := rtelem0
rtelemkind := rtelem.Kind()
for rtelemkind == reflect.Ptr {
rtelem = rtelem.Elem()
rtelemkind = rtelem.Kind()
}
var fn *codecFn
var rvCanset = rv.CanSet()
var rvChanged bool
var rv0 = rv
var rv9 reflect.Value
var rvlen int // := rv.Len()
hasLen := containerLenS > 0
var j int
for ; (hasLen && j < containerLenS) || !(hasLen || d.checkBreak()); j++ {
if j == 0 && rvIsNil(rv) {
if hasLen {
rvlen = decInferLen(containerLenS, d.h.MaxInitLen, rtelem0Size)
} else {
rvlen = decDefChanCap
}
if rvCanset {
rv = reflect.MakeChan(f.ti.rt, rvlen)
rvChanged = true
} else {
d.errorf("cannot decode into non-settable chan")
}
}
slh.ElemContainerState(j)
if rtelem0Mut || !rv9.IsValid() { // || (rtElem0Kind == reflect.Ptr && rvIsNil(rv9)) {
rv9 = rvZeroAddrK(rtelem0, rtElem0Kind)
}
if fn == nil {
fn = d.h.fn(rtelem)
}
d.decodeValue(rv9, fn)
rv.Send(rv9)
}
slh.End()
if rvChanged { // infers rvCanset=true, so it can be reset
rv0.Set(rv)
}
}
func (d *Decoder) kMap(f *codecFnInfo, rv reflect.Value) {
containerLen := d.mapStart()
if containerLen == decContainerLenNil {
rvSetDirect(rv, f.ti.rv0)
return
}
ti := f.ti
if rvIsNil(rv) {
rvlen := decInferLen(containerLen, d.h.MaxInitLen, int(ti.key.Size()+ti.elem.Size()))
rvSetDirect(rv, makeMapReflect(ti.rt, rvlen))
}
if containerLen == 0 {
d.mapEnd()
return
}
ktype, vtype := ti.key, ti.elem
ktypeId := rt2id(ktype)
vtypeKind := vtype.Kind()
ktypeKind := ktype.Kind()
var vtypeElem reflect.Type
var keyFn, valFn *codecFn
var ktypeLo, vtypeLo reflect.Type
for ktypeLo = ktype; ktypeLo.Kind() == reflect.Ptr; ktypeLo = ktypeLo.Elem() {
}
for vtypeLo = vtype; vtypeLo.Kind() == reflect.Ptr; vtypeLo = vtypeLo.Elem() {
}
rvvMut := !isImmutableKind(vtypeKind)
// we do a doMapGet if kind is mutable, and InterfaceReset=true if interface
var doMapGet, doMapSet bool
if !d.h.MapValueReset {
if rvvMut {
if vtypeKind == reflect.Interface {
if !d.h.InterfaceReset {
doMapGet = true
}
} else {
doMapGet = true
}
}
}
var rvk, rvkn, rvv, rvvn, rvva reflect.Value
var rvvaSet bool
rvkMut := !isImmutableKind(ktype.Kind()) // if ktype is immutable, then re-use the same rvk.
ktypeIsString := ktypeId == stringTypId
ktypeIsIntf := ktypeId == intfTypId
hasLen := containerLen > 0
var kstrbs []byte
for j := 0; (hasLen && j < containerLen) || !(hasLen || d.checkBreak()); j++ {
if j == 0 {
if !rvkMut {
rvkn = rvZeroAddrK(ktype, ktypeKind)
}
if !rvvMut {
rvvn = rvZeroAddrK(vtype, vtypeKind)
}
}
if rvkMut {
rvk = rvZeroAddrK(ktype, ktypeKind)
} else {
rvk = rvkn
}
d.mapElemKey()
if ktypeIsString {
kstrbs = d.d.DecodeStringAsBytes()
rvk.SetString(stringView(kstrbs)) // NOTE: if doing an insert, use real string (not stringview)
} else {
if keyFn == nil {
keyFn = d.h.fn(ktypeLo)
}
d.decodeValue(rvk, keyFn)
}
// special case if interface wrapping a byte array.
if ktypeIsIntf {
if rvk2 := rvk.Elem(); rvk2.IsValid() && rvk2.Type() == uint8SliceTyp {
rvk.Set(rv4i(d.string(rvGetBytes(rvk2))))
}
// NOTE: consider failing early if map/slice/func
}
d.mapElemValue()
doMapSet = true // set to false if u do a get, and its a non-nil pointer
if doMapGet {
if !rvvaSet {
rvva = mapAddressableRV(vtype, vtypeKind)
rvvaSet = true
}
rvv = mapGet(rv, rvk, rvva) // reflect.Value{})
if vtypeKind == reflect.Ptr {
if rvv.IsValid() && !rvIsNil(rvv) {
doMapSet = false
} else {
if vtypeElem == nil {
vtypeElem = vtype.Elem()
}
rvv = reflect.New(vtypeElem)
}
} else if rvv.IsValid() && vtypeKind == reflect.Interface && !rvIsNil(rvv) {
rvvn = rvZeroAddrK(vtype, vtypeKind)
rvvn.Set(rvv)
rvv = rvvn
} else if rvvMut {
rvv = rvZeroAddrK(vtype, vtypeKind)
} else {
rvv = rvvn
}
} else if rvvMut {
rvv = rvZeroAddrK(vtype, vtypeKind)
} else {
rvv = rvvn
}
if valFn == nil {
valFn = d.h.fn(vtypeLo)
}
// We MUST be done with the stringview of the key, BEFORE decoding the value (rvv)
// so that we don't unknowingly reuse the rvk backing buffer during rvv decode.
if doMapSet && ktypeIsString { // set to a real string (not string view)
rvk.SetString(d.string(kstrbs))
}
d.decodeValue(rvv, valFn)
if doMapSet {
mapSet(rv, rvk, rvv)
}
}
d.mapEnd()
}
// decNaked is used to keep track of the primitives decoded.
// Without it, we would have to decode each primitive and wrap it
// in an interface{}, causing an allocation.
// In this model, the primitives are decoded in a "pseudo-atomic" fashion,
// so we can rest assured that no other decoding happens while these
// primitives are being decoded.
//
// maps and arrays are not handled by this mechanism.
// However, RawExt is, and we accommodate for extensions that decode
// RawExt from DecodeNaked, but need to decode the value subsequently.
// kInterfaceNaked and swallow, which call DecodeNaked, handle this caveat.
//
// However, decNaked also keeps some arrays of default maps and slices
// used in DecodeNaked. This way, we can get a pointer to it
// without causing a new heap allocation.
//
// kInterfaceNaked will ensure that there is no allocation for the common
// uses.
type decNaked struct {
// r RawExt // used for RawExt, uint, []byte.
// primitives below
u uint64
i int64
f float64
l []byte
s string
// ---- cpu cache line boundary?
t time.Time
b bool
// state
v valueType
}
// Decoder reads and decodes an object from an input stream in a supported format.
//
// Decoder is NOT safe for concurrent use i.e. a Decoder cannot be used
// concurrently in multiple goroutines.
//
// However, as Decoder could be allocation heavy to initialize, a Reset method is provided
// so its state can be reused to decode new input streams repeatedly.
// This is the idiomatic way to use.
type Decoder struct {
panicHdl
// hopefully, reduce derefencing cost by laying the decReader inside the Decoder.
// Try to put things that go together to fit within a cache line (8 words).
d decDriver
// cache the mapTypeId and sliceTypeId for faster comparisons
mtid uintptr
stid uintptr
h *BasicHandle
blist bytesFreelist
// ---- cpu cache line boundary?
decRd
// ---- cpu cache line boundary?
n decNaked
hh Handle
err error
// ---- cpu cache line boundary?
is map[string]string // used for interning strings
// ---- writable fields during execution --- *try* to keep in sep cache line
maxdepth int16
depth int16
// Extensions can call Decode() within a current Decode() call.
// We need to know when the top level Decode() call returns,
// so we can decide whether to Release() or not.
calls uint16 // what depth in mustDecode are we in now.
c containerState
_ [1]byte // padding
// ---- cpu cache line boundary?
// b is an always-available scratch buffer used by Decoder and decDrivers.
// By being always-available, it can be used for one-off things without
// having to get from freelist, use, and return back to freelist.
b [decScratchByteArrayLen]byte
}
// NewDecoder returns a Decoder for decoding a stream of bytes from an io.Reader.
//
// For efficiency, Users are encouraged to configure ReaderBufferSize on the handle
// OR pass in a memory buffered reader (eg bufio.Reader, bytes.Buffer).
func NewDecoder(r io.Reader, h Handle) *Decoder {
d := h.newDecDriver().decoder()
d.Reset(r)
return d
}
// NewDecoderBytes returns a Decoder which efficiently decodes directly
// from a byte slice with zero copying.
func NewDecoderBytes(in []byte, h Handle) *Decoder {
d := h.newDecDriver().decoder()
d.ResetBytes(in)
return d
}
func (d *Decoder) r() *decRd {
return &d.decRd
}
func (d *Decoder) init(h Handle) {
d.bytes = true
d.err = errDecoderNotInitialized
d.h = basicHandle(h)
d.hh = h
d.be = h.isBinary()
// NOTE: do not initialize d.n here. It is lazily initialized in d.naked()
if d.h.InternString {
d.is = make(map[string]string, 32)
}
}
func (d *Decoder) resetCommon() {
d.d.reset()
d.err = nil
d.depth = 0
d.calls = 0
d.maxdepth = d.h.MaxDepth
if d.maxdepth <= 0 {
d.maxdepth = decDefMaxDepth
}
// reset all things which were cached from the Handle, but could change
d.mtid, d.stid = 0, 0
d.mtr, d.str = false, false
if d.h.MapType != nil {
d.mtid = rt2id(d.h.MapType)
d.mtr = fastpathAV.index(d.mtid) != -1
}
if d.h.SliceType != nil {
d.stid = rt2id(d.h.SliceType)
d.str = fastpathAV.index(d.stid) != -1
}
}
// Reset the Decoder with a new Reader to decode from,
// clearing all state from last run(s).
func (d *Decoder) Reset(r io.Reader) {
if r == nil {
return
}
d.bytes = false
if d.h.ReaderBufferSize > 0 {
if d.bi == nil {
d.bi = new(bufioDecReader)
}
d.bi.reset(r, d.h.ReaderBufferSize, &d.blist)
d.bufio = true
} else {
if d.ri == nil {
d.ri = new(ioDecReader)
}
d.ri.reset(r, &d.blist)
d.bufio = false
}
d.resetCommon()
}
// ResetBytes resets the Decoder with a new []byte to decode from,
// clearing all state from last run(s).
func (d *Decoder) ResetBytes(in []byte) {
if in == nil {
return
}
d.bytes = true
d.bufio = false
d.rb.reset(in)
d.resetCommon()
}
func (d *Decoder) naked() *decNaked {
return &d.n
}
// Decode decodes the stream from reader and stores the result in the
// value pointed to by v. v cannot be a nil pointer. v can also be
// a reflect.Value of a pointer.
//
// Note that a pointer to a nil interface is not a nil pointer.
// If you do not know what type of stream it is, pass in a pointer to a nil interface.
// We will decode and store a value in that nil interface.
//
// Sample usages:
// // Decoding into a non-nil typed value
// var f float32
// err = codec.NewDecoder(r, handle).Decode(&f)
//
// // Decoding into nil interface
// var v interface{}
// dec := codec.NewDecoder(r, handle)
// err = dec.Decode(&v)
//
// When decoding into a nil interface{}, we will decode into an appropriate value based
// on the contents of the stream:
// - Numbers are decoded as float64, int64 or uint64.
// - Other values are decoded appropriately depending on the type:
// bool, string, []byte, time.Time, etc
// - Extensions are decoded as RawExt (if no ext function registered for the tag)
// Configurations exist on the Handle to override defaults
// (e.g. for MapType, SliceType and how to decode raw bytes).
//
// When decoding into a non-nil interface{} value, the mode of encoding is based on the
// type of the value. When a value is seen:
// - If an extension is registered for it, call that extension function
// - If it implements BinaryUnmarshaler, call its UnmarshalBinary(data []byte) error
// - Else decode it based on its reflect.Kind
//
// There are some special rules when decoding into containers (slice/array/map/struct).
// Decode will typically use the stream contents to UPDATE the container i.e. the values
// in these containers will not be zero'ed before decoding.
// - A map can be decoded from a stream map, by updating matching keys.
// - A slice can be decoded from a stream array,
// by updating the first n elements, where n is length of the stream.
// - A slice can be decoded from a stream map, by decoding as if
// it contains a sequence of key-value pairs.
// - A struct can be decoded from a stream map, by updating matching fields.
// - A struct can be decoded from a stream array,
// by updating fields as they occur in the struct (by index).
//
// This in-place update maintains consistency in the decoding philosophy (i.e. we ALWAYS update
// in place by default). However, the consequence of this is that values in slices or maps
// which are not zero'ed before hand, will have part of the prior values in place after decode
// if the stream doesn't contain an update for those parts.
//
// This in-place update can be disabled by configuring the MapValueReset and SliceElementReset
// decode options available on every handle.
//
// Furthermore, when decoding a stream map or array with length of 0 into a nil map or slice,
// we reset the destination map or slice to a zero-length value.
//
// However, when decoding a stream nil, we reset the destination container
// to its "zero" value (e.g. nil for slice/map, etc).
//
// Note: we allow nil values in the stream anywhere except for map keys.
// A nil value in the encoded stream where a map key is expected is treated as an error.
func (d *Decoder) Decode(v interface{}) (err error) {
// tried to use closure, as runtime optimizes defer with no params.
// This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
// Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
// defer func() { d.deferred(&err) }()
// { x, y := d, &err; defer func() { x.deferred(y) }() }
if d.err != nil {
return d.err
}
if recoverPanicToErr {
defer func() {
if x := recover(); x != nil {
panicValToErr(d, x, &d.err)
if d.err != err {
err = d.err
}
}
}()
}
// defer d.deferred(&err)
d.mustDecode(v)
return
}
// MustDecode is like Decode, but panics if unable to Decode.
// This provides insight to the code location that triggered the error.
func (d *Decoder) MustDecode(v interface{}) {
if d.err != nil {
panic(d.err)
}
d.mustDecode(v)
}
// MustDecode is like Decode, but panics if unable to Decode.
// This provides insight to the code location that triggered the error.
func (d *Decoder) mustDecode(v interface{}) {
// Top-level: v is a pointer and not nil.
d.calls++
d.decode(v)
d.calls--
if d.calls == 0 {
d.d.atEndOfDecode()
}
}
// Release releases shared (pooled) resources.
//
// It is important to call Release() when done with a Decoder, so those resources
// are released instantly for use by subsequently created Decoders.
//
// By default, Release() is automatically called unless the option ExplicitRelease is set.
//
// Deprecated: Release is a no-op as pooled resources are not used with an Decoder.
// This method is kept for compatibility reasons only.
func (d *Decoder) Release() {
}
func (d *Decoder) swallow() {
switch d.d.ContainerType() {
case valueTypeNil:
case valueTypeMap:
containerLen := d.mapStart()
hasLen := containerLen >= 0
for j := 0; (hasLen && j < containerLen) || !(hasLen || d.checkBreak()); j++ {
d.mapElemKey()
d.swallow()
d.mapElemValue()
d.swallow()
}
d.mapEnd()
case valueTypeArray:
containerLen := d.arrayStart()
hasLen := containerLen >= 0
for j := 0; (hasLen && j < containerLen) || !(hasLen || d.checkBreak()); j++ {
d.arrayElem()
d.swallow()
}
d.arrayEnd()
case valueTypeBytes:
d.d.DecodeBytes(d.b[:], true)
case valueTypeString:
d.d.DecodeStringAsBytes()
default:
// these are all primitives, which we can get from decodeNaked
// if RawExt using Value, complete the processing.
n := d.naked()
d.d.DecodeNaked()
if n.v == valueTypeExt && n.l == nil {
var v2 interface{}
d.decode(&v2)
}
}
}
func setZero(iv interface{}) {
if iv == nil {
return
}
if _, ok := isNil(iv); ok {
return
}
// var canDecode bool
switch v := iv.(type) {
case *string:
*v = ""
case *bool:
*v = false
case *int:
*v = 0
case *int8:
*v = 0
case *int16:
*v = 0
case *int32:
*v = 0
case *int64:
*v = 0
case *uint:
*v = 0
case *uint8:
*v = 0
case *uint16:
*v = 0
case *uint32:
*v = 0
case *uint64:
*v = 0
case *float32:
*v = 0
case *float64:
*v = 0
case *[]uint8:
*v = nil
case *Raw:
*v = nil
case *time.Time:
*v = time.Time{}
case reflect.Value:
setZeroRV(v)
default:
if !fastpathDecodeSetZeroTypeSwitch(iv) {
setZeroRV(rv4i(iv))
}
}
}
func setZeroRV(v reflect.Value) {
// It not decodeable, we do not touch it.
// We considered empty'ing it if not decodeable e.g.
// - if chan, drain it
// - if map, clear it
// - if slice or array, zero all elements up to len
//
// However, we decided instead that we either will set the
// whole value to the zero value, or leave AS IS.
if isDecodeable(v) {
if v.Kind() == reflect.Ptr {
v = v.Elem()
}
if v.CanSet() {
v.Set(reflect.Zero(v.Type()))
}
}
}
func (d *Decoder) decode(iv interface{}) {
// a switch with only concrete types can be optimized.
// consequently, we deal with nil and interfaces outside the switch.
if iv == nil {
d.errorstr(errstrCannotDecodeIntoNil)
return
}
switch v := iv.(type) {
// case nil:
// case Selfer:
case reflect.Value:
d.ensureDecodeable(v)
d.decodeValue(v, nil)
case *string:
*v = string(d.d.DecodeStringAsBytes())
case *bool:
*v = d.d.DecodeBool()
case *int:
*v = int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize))
case *int8:
*v = int8(chkOvf.IntV(d.d.DecodeInt64(), 8))
case *int16:
*v = int16(chkOvf.IntV(d.d.DecodeInt64(), 16))
case *int32:
*v = int32(chkOvf.IntV(d.d.DecodeInt64(), 32))
case *int64:
*v = d.d.DecodeInt64()
case *uint:
*v = uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))
case *uint8:
*v = uint8(chkOvf.UintV(d.d.DecodeUint64(), 8))
case *uint16:
*v = uint16(chkOvf.UintV(d.d.DecodeUint64(), 16))
case *uint32:
*v = uint32(chkOvf.UintV(d.d.DecodeUint64(), 32))
case *uint64:
*v = d.d.DecodeUint64()
case *float32:
*v = float32(d.decodeFloat32())
case *float64:
*v = d.d.DecodeFloat64()
case *[]uint8:
*v = d.d.DecodeBytes(*v, false)
case []uint8:
b := d.d.DecodeBytes(v, false)
if !(len(b) > 0 && len(b) == len(v) && &b[0] == &v[0]) {
copy(v, b)
}
case *time.Time:
*v = d.d.DecodeTime()
case *Raw:
*v = d.rawBytes()
case *interface{}:
d.decodeValue(rv4i(iv), nil)
default:
if v, ok := iv.(Selfer); ok {
v.CodecDecodeSelf(d)
} else if !fastpathDecodeTypeSwitch(iv, d) {
v := rv4i(iv)
d.ensureDecodeable(v)
d.decodeValue(v, nil)
}
}
}
// decodeValue MUST be called by the actual value we want to decode into,
// not its addr or a reference to it.
//
// This way, we know if it is itself a pointer, and can handle nil in
// the stream effectively.
func (d *Decoder) decodeValue(rv reflect.Value, fn *codecFn) {
// If stream is not containing a nil value, then we can deref to the base
// non-pointer value, and decode into that.
var rvp reflect.Value
var rvpValid bool
if rv.Kind() == reflect.Ptr {
if d.d.TryNil() {
if rvelem := rv.Elem(); rvelem.CanSet() {
rvelem.Set(reflect.Zero(rvelem.Type()))
}
return
}
rvpValid = true
for rv.Kind() == reflect.Ptr {
if rvIsNil(rv) {
rvSetDirect(rv, reflect.New(rv.Type().Elem()))
}
rvp = rv
rv = rv.Elem()
}
}
if fn == nil {
fn = d.h.fn(rv.Type())
}
if fn.i.addrD {
if rvpValid {
fn.fd(d, &fn.i, rvp)
} else if rv.CanAddr() {
fn.fd(d, &fn.i, rv.Addr())
} else if !fn.i.addrF {
fn.fd(d, &fn.i, rv)
} else {
d.errorf("cannot decode into a non-pointer value")
}
} else {
fn.fd(d, &fn.i, rv)
}
}
func (d *Decoder) structFieldNotFound(index int, rvkencname string) {
// NOTE: rvkencname may be a stringView, so don't pass it to another function.
if d.h.ErrorIfNoField {
if index >= 0 {
d.errorf("no matching struct field found when decoding stream array at index %v", index)
return
} else if rvkencname != "" {
d.errorf("no matching struct field found when decoding stream map with key " + rvkencname)
return
}
}
d.swallow()
}
func (d *Decoder) arrayCannotExpand(sliceLen, streamLen int) {
if d.h.ErrorIfNoArrayExpand {
d.errorf("cannot expand array len during decode from %v to %v", sliceLen, streamLen)
}
}
func isDecodeable(rv reflect.Value) (canDecode bool) {
switch rv.Kind() {
case reflect.Array:
return rv.CanAddr()
case reflect.Ptr:
if !rvIsNil(rv) {
return true
}
case reflect.Slice, reflect.Chan, reflect.Map:
if !rvIsNil(rv) {
return true
}
}
return
}
func (d *Decoder) ensureDecodeable(rv reflect.Value) {
// decode can take any reflect.Value that is a inherently addressable i.e.
// - array
// - non-nil chan (we will SEND to it)
// - non-nil slice (we will set its elements)
// - non-nil map (we will put into it)
// - non-nil pointer (we can "update" it)
if isDecodeable(rv) {
return
}
if !rv.IsValid() {
d.errorstr(errstrCannotDecodeIntoNil)
return
}
if !rv.CanInterface() {
d.errorf("cannot decode into a value without an interface: %v", rv)
return
}
rvi := rv2i(rv)
rvk := rv.Kind()
d.errorf("cannot decode into value of kind: %v, type: %T, %#v", rvk, rvi, rvi)
}
func (d *Decoder) depthIncr() {
d.depth++
if d.depth >= d.maxdepth {
panic(errMaxDepthExceeded)
}
}
func (d *Decoder) depthDecr() {
d.depth--
}
// Possibly get an interned version of a string
//
// This should mostly be used for map keys, where the key type is string.
// This is because keys of a map/struct are typically reused across many objects.
func (d *Decoder) string(v []byte) (s string) {
if v == nil {
return
}
if d.is == nil {
return string(v) // don't return stringView, as we need a real string here.
}
s, ok := d.is[string(v)] // no allocation here, per go implementation
if !ok {
s = string(v) // new allocation here
d.is[s] = s
}
return
}
// nextValueBytes returns the next value in the stream as a set of bytes.
func (d *Decoder) nextValueBytes() (bs []byte) {
d.d.uncacheRead()
d.r().track()
d.swallow()
bs = d.r().stopTrack()
return
}
func (d *Decoder) rawBytes() []byte {
// ensure that this is not a view into the bytes
// i.e. make new copy always.
bs := d.nextValueBytes()
bs2 := make([]byte, len(bs))
copy(bs2, bs)
return bs2
}
func (d *Decoder) wrapErr(v interface{}, err *error) {
*err = decodeError{codecError: codecError{name: d.hh.Name(), err: v}, pos: d.NumBytesRead()}
}
// NumBytesRead returns the number of bytes read
func (d *Decoder) NumBytesRead() int {
return int(d.r().numread())
}
// decodeFloat32 will delegate to an appropriate DecodeFloat32 implementation (if exists),
// else if will call DecodeFloat64 and ensure the value doesn't overflow.
//
// Note that we return float64 to reduce unnecessary conversions
func (d *Decoder) decodeFloat32() float32 {
if d.js {
return d.jsondriver().DecodeFloat32() // custom implementation for 32-bit
}
return float32(chkOvf.Float32V(d.d.DecodeFloat64()))
}
// ---- container tracking
// Note: We update the .c after calling the callback.
// This way, the callback can know what the last status was.
// Note: if you call mapStart and it returns decContainerLenNil,
// then do NOT call mapEnd.
func (d *Decoder) mapStart() (v int) {
v = d.d.ReadMapStart()
if v != decContainerLenNil {
d.depthIncr()
d.c = containerMapStart
}
return
}
func (d *Decoder) mapElemKey() {
if d.js {
d.jsondriver().ReadMapElemKey()
}
d.c = containerMapKey
}
func (d *Decoder) mapElemValue() {
if d.js {
d.jsondriver().ReadMapElemValue()
}
d.c = containerMapValue
}
func (d *Decoder) mapEnd() {
d.d.ReadMapEnd()
d.depthDecr()
// d.c = containerMapEnd
d.c = 0
}
func (d *Decoder) arrayStart() (v int) {
v = d.d.ReadArrayStart()
if v != decContainerLenNil {
d.depthIncr()
d.c = containerArrayStart
}
return
}
func (d *Decoder) arrayElem() {
if d.js {
d.jsondriver().ReadArrayElem()
}
d.c = containerArrayElem
}
func (d *Decoder) arrayEnd() {
d.d.ReadArrayEnd()
d.depthDecr()
// d.c = containerArrayEnd
d.c = 0
}
func (d *Decoder) interfaceExtConvertAndDecode(v interface{}, ext Ext) {
// var v interface{} = ext.ConvertExt(rv)
// d.d.decode(&v)
// ext.UpdateExt(rv, v)
// assume v is a pointer:
// - if struct|array, pass as is to ConvertExt
// - else make it non-addressable and pass to ConvertExt
// - make return value from ConvertExt addressable
// - decode into it
// - return the interface for passing into UpdateExt.
// - interface should be a pointer if struct|array, else a value
var s interface{}
rv := rv4i(v)
rv2 := rv.Elem()
rvk := rv2.Kind()
if rvk == reflect.Struct || rvk == reflect.Array {
s = ext.ConvertExt(v)
} else {
s = ext.ConvertExt(rv2i(rv2))
}
rv = rv4i(s)
if !rv.CanAddr() {
if rv.Kind() == reflect.Ptr {
rv2 = reflect.New(rv.Type().Elem())
} else {
rv2 = rvZeroAddrK(rv.Type(), rv.Kind())
}
rvSetDirect(rv2, rv)
rv = rv2
}
d.decodeValue(rv, nil)
ext.UpdateExt(v, rv2i(rv))
}
func (d *Decoder) sideDecode(v interface{}, bs []byte) {
rv := baseRV(v)
NewDecoderBytes(bs, d.hh).decodeValue(rv, d.h.fnNoExt(rv.Type()))
}
// --------------------------------------------------
// decSliceHelper assists when decoding into a slice, from a map or an array in the stream.
// A slice can be set from a map or array in stream. This supports the MapBySlice interface.
//
// Note: if IsNil, do not call ElemContainerState.
type decSliceHelper struct {
d *Decoder
ct valueType
Array bool
IsNil bool
}
func (d *Decoder) decSliceHelperStart() (x decSliceHelper, clen int) {
x.ct = d.d.ContainerType()
x.d = d
switch x.ct {
case valueTypeNil:
x.IsNil = true
case valueTypeArray:
x.Array = true
clen = d.arrayStart()
case valueTypeMap:
clen = d.mapStart() * 2
default:
d.errorf("only encoded map or array can be decoded into a slice (%d)", x.ct)
}
return
}
func (x decSliceHelper) End() {
if x.IsNil {
} else if x.Array {
x.d.arrayEnd()
} else {
x.d.mapEnd()
}
}
func (x decSliceHelper) ElemContainerState(index int) {
// Note: if isnil, clen=0, so we never call into ElemContainerState
if x.Array {
x.d.arrayElem()
} else {
if index%2 == 0 {
x.d.mapElemKey()
} else {
x.d.mapElemValue()
}
}
}
func decByteSlice(r *decRd, clen, maxInitLen int, bs []byte) (bsOut []byte) {
if clen == 0 {
return zeroByteSlice
}
if len(bs) == clen {
bsOut = bs
r.readb(bsOut)
} else if cap(bs) >= clen {
bsOut = bs[:clen]
r.readb(bsOut)
} else {
len2 := decInferLen(clen, maxInitLen, 1)
bsOut = make([]byte, len2)
r.readb(bsOut)
for len2 < clen {
len3 := decInferLen(clen-len2, maxInitLen, 1)
bs3 := bsOut
bsOut = make([]byte, len2+len3)
copy(bsOut, bs3)
r.readb(bsOut[len2:])
len2 += len3
}
}
return
}
// detachZeroCopyBytes will copy the in bytes into dest,
// or create a new one if not large enough.
//
// It is used to ensure that the []byte returned is not
// part of the input stream or input stream buffers.
func detachZeroCopyBytes(isBytesReader bool, dest []byte, in []byte) (out []byte) {
if len(in) > 0 {
// if isBytesReader || len(in) <= scratchByteArrayLen {
// if cap(dest) >= len(in) {
// out = dest[:len(in)]
// } else {
// out = make([]byte, len(in))
// }
// copy(out, in)
// return
// }
if cap(dest) >= len(in) {
out = dest[:len(in)]
} else {
out = make([]byte, len(in))
}
copy(out, in)
return
}
return in
}
// decInferLen will infer a sensible length, given the following:
// - clen: length wanted.
// - maxlen: max length to be returned.
// if <= 0, it is unset, and we infer it based on the unit size
// - unit: number of bytes for each element of the collection
func decInferLen(clen, maxlen, unit int) (rvlen int) {
const maxLenIfUnset = 8 // 64
// handle when maxlen is not set i.e. <= 0
// clen==0: use 0
// maxlen<=0, clen<0: use default
// maxlen> 0, clen<0: use default
// maxlen<=0, clen>0: infer maxlen, and cap on it
// maxlen> 0, clen>0: cap at maxlen
if clen == 0 {
return
}
if clen < 0 {
if clen == decContainerLenNil {
return 0
}
return maxLenIfUnset
}
if unit == 0 {
return clen
}
if maxlen <= 0 {
// no maxlen defined. Use maximum of 256K memory, with a floor of 4K items.
// maxlen = 256 * 1024 / unit
// if maxlen < (4 * 1024) {
// maxlen = 4 * 1024
// }
if unit < (256 / 4) {
maxlen = 256 * 1024 / unit
} else {
maxlen = 4 * 1024
}
// if maxlen > maxLenIfUnset {
// maxlen = maxLenIfUnset
// }
}
if clen > maxlen {
rvlen = maxlen
} else {
rvlen = clen
}
return
}
func decReadFull(r io.Reader, bs []byte) (n uint, err error) {
var nn int
for n < uint(len(bs)) && err == nil {
nn, err = r.Read(bs[n:])
if nn > 0 {
if err == io.EOF {
// leave EOF for next time
err = nil
}
n += uint(nn)
}
}
// do not do this - it serves no purpose
// if n != len(bs) && err == io.EOF { err = io.ErrUnexpectedEOF }
return
}
func decNakedReadRawBytes(dr decDriver, d *Decoder, n *decNaked, rawToString bool) {
if rawToString {
n.v = valueTypeString
n.s = string(dr.DecodeBytes(d.b[:], true))
} else {
n.v = valueTypeBytes
n.l = dr.DecodeBytes(nil, false)
}
}